期刊文献+

Recommending Authors and Papers Based on ACTTM Community and Bilayer Citation Network 被引量:4

Recommending Authors and Papers Based on ACTTM Community and Bilayer Citation Network
下载PDF
导出
摘要 Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy. Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.
出处 《China Communications》 SCIE CSCD 2018年第7期111-130,共20页 中国通信(英文版)
基金 supported by the grants from Natural Science Foundation of China (Project No.61471060)
关键词 academic recommendation topic model community detection bilayer citation network 作者 引证 网络 社区 报纸 时间复杂性 时间模型 精确性
  • 相关文献

参考文献1

二级参考文献2

共引文献19

同被引文献36

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部