期刊文献+

基于部分实例重判的二分K-means算法 被引量:1

Bisecting K-means algorithm based on partial instance rejudge
下载PDF
导出
摘要 针对二分K-means算法存在的误判实例无法再参与后续划分并降低了聚类的精度的问题.提出一种基于部分实例重判的二分K-means算法,通过区分目标簇和候选簇,过滤出候选簇中的召回实例,对召回实例所应归属的簇进行重判,实现了误判实例的正确聚类.实验结果表明,改进算法对三个实验数据集都是有效的,在不同程度上提高了聚类的准确性,同时对算法的运行速度也有小幅度的提升. The problem of misjudgment instance of bisecting K-means being unable to participate in the subsequent partitioning reduces the accuracy of clustering. This paper proposes a bisecting K-means algorithm based on partial instance rejudge,which can correctly classify the misjudgment instances by distinguishing the object clusters and the candidate clusters,filtering the recall instances from the candidate clusters,and reclassifying the recall instances. The experimental results show that the improved algorithm is effective for three data sets,and can improve the accuracy of clustering in different extent and the running speed of the algorithm.
作者 吴清寿 刘耿耿 郭文忠 WU Qingshou;LIU Genggeng;GUO Wenzhong(Department of Mathematics and Computer Science,Wuyi University, Wuyishan,Fujian 354300,China;College of Mathematics and Computer Science,Fuzhou University, Fuzhou,Fujian 350116,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2018年第3期317-323,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11501114) 福建省教育厅科技资助项目(JA14309) 福建省中青年教师教育科研资助项目(JAT170608)
关键词 二分k均值 部分实例重判 候选簇 召回实例 聚类 bisecting k-means partial instance rejudge candidate cluster recall instance clustering
  • 相关文献

参考文献8

二级参考文献69

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Savaresi S M, Boley D. On the Performance of Bisecting K-Means and PDDP[C]//Proc. of the 1st SIAM International Conference on Data Mining. Chicago, USA: [s. n.], 2001: 1-14. 被引量:1
  • 3Steinbach M, Karypis G, Kumar V. A Comparison of Document Clustering Techniques[C]//Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA: [s. n.], 2000: 525-526. 被引量:1
  • 4Liu Xiaozhang, Feng Guocan. Kernel Bisecting K-Means Clustering for SVM Training Sample Reduction[C]//Proc. of the 19th International Conference on Pattern Recognition. Tampa, USA: [s. n.], 2008: 1-4. 被引量:1
  • 5Berners-Lee T, Hendler J, Lassila O. The Semantic Web [J]. Scientific American, 2001,284(5):34-43. 被引量:1
  • 6Borst W N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse [D]. Enschede: University of Twente, 1997: 56-71. 被引量:1
  • 7Maedche A, Staab S. Ontology Learning for the Semantic Web [J]. IEEE Intelligent Systems: Special Issue on the Semantic Web, 2001,16(2):72-79. 被引量:1
  • 8Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques [R]. Minnesota University, 2000:8-19. 被引量:1
  • 9Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques [M]. 2nd Edition. San Francisco: Morgan Kaufmann, 2005: 253-261. 被引量:1
  • 10Lewis D. Reuters-21578 text categorization test collection [DB/OL]. [2004-05-14] http://www.daviddlewis.com/resources/testcollections/reuters21578/. 被引量:1

共引文献1208

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部