期刊文献+

改进的二分K均值聚类算法 被引量:25

IMPROVED BISECTING K-MEANS CLUSTERING ALGORITHM
下载PDF
导出
摘要 K均值算法是一种常用的基于原型的聚类算法。但该算法要求用户随机选择初始质心,使得K均值算法受初始化影响较大。二分K均值算法虽然改善了这个问题,但仍然要求用户指定聚类个数,影响了聚类效果。用层次聚类对二分法进行改进,解决了二分K均值算法受用户指定的聚类个数的影响的问题。并结合Chameleon算法,合并划分过细簇,优化聚类结果。仿真实验证明改进的聚类算法的抱团性和分离性优于二分K均值聚类算法。 K-means algorithm is a kind of commonly used clustering algorithm based on the prototype. But the algorithm requires the user to randomly select initial centre of mass, which makes the K-means algorithm greatly influenced by the initialisation. Although the bisecting K-means algorithm has ameliorated this issue, but it still requires the user to specify clustering number, which impacts clustering effect. We use hierarchical clustering to improve bisecting K-means algorithm, thus solve the problem of impact caused by the bisecting K-means algorithm being affected by the number of clustering the user specified. Moreover, we combine the Chameleon algorithm and unite the clusters being divided too fine and optimise the clustering results. Simulation experiments prove that the unifying nature and separation property of the improved clustering algorithm is better than the bisecting K-means clustering algorithm.
出处 《计算机应用与软件》 CSCD 2015年第2期261-263,277,共4页 Computer Applications and Software
基金 广州科技计划项目(7411655926875)
关键词 K均值聚类 二分K均值聚类 CHAMELEON算法 层次聚类 K-means clustering Bisect K-means clustering Chameleon algorithm Hierarchical clustering
  • 相关文献

参考文献10

二级参考文献48

  • 1李凯,李昆仑,崔丽娟.模型聚类及在集成学习中的应用研究[J].计算机研究与发展,2007,44(z2):203-207. 被引量:7
  • 2贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 3谢崇宝,袁宏源,郭元裕.最优分类的模糊划分聚类改进方法[J].系统工程,1997,15(1):58-63. 被引量:12
  • 4Savaresi S M, Boley D. On the Performance of Bisecting K-Means and PDDP[C]//Proc. of the 1st SIAM International Conference on Data Mining. Chicago, USA: [s. n.], 2001: 1-14. 被引量:1
  • 5Steinbach M, Karypis G, Kumar V. A Comparison of Document Clustering Techniques[C]//Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA: [s. n.], 2000: 525-526. 被引量:1
  • 6Liu Xiaozhang, Feng Guocan. Kernel Bisecting K-Means Clustering for SVM Training Sample Reduction[C]//Proc. of the 19th International Conference on Pattern Recognition. Tampa, USA: [s. n.], 2008: 1-4. 被引量:1
  • 7Han Jiawei,Kamber M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2006 被引量:9
  • 8Bandyopadhyay S, Maulik U.An evolutionary technique based on K-means algorithm for optimal clustering in RN[J].Information Sciences,2002,146:221-237. 被引量:1
  • 9Larsen B, Aone C.A new cluster validity indexes for the fuzzy c-mean[C]//KDD-99, San Diego, California, 1999. 被引量:1
  • 10Steinbach M, Karypis G, Kumar V, et al.Don' t worry be messy.Technical Report #00-034[R].2000. 被引量:1

共引文献95

同被引文献215

引证文献25

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部