期刊文献+

基于高斯函数加权的自适应KNN算法 被引量:4

An Adaptive k-Nearest Neighbor Algorithm Based on Gaussian Function Weighting
下载PDF
导出
摘要 K近邻算法作模式识别研究热点之一,其样本点最近邻个数的选取一直受到广泛的关注。传统的KNN算法再分配为样本点分配最近邻个数时没有考虑样本空间分配不均的情况。针对这种情况提出一种基于高斯函数加权的自适应KNN算法,根据数据总体分布特点为每一个样本点自适应地分配最近邻个数。实验结果表明,与现有的典型算法相比,该算法表现出较好的分类精度。 K-nearest neighbor algorithm is one of the hottest topics in pattern recognition, the selection of the nearest neighbor number of sample points has drawn much attention. When the traditional KNN algorithm is redistributed, the distribution of the nearest neighbor in the sample points does not consider the uneven distribution of sample space. Proposes an adaptive KNN algorithm based on Gaussian function weighting. The nearest neighbor number is adaptively assigned to each sample point according to the overall distribution of data. Experimental results show that the proposed algorithm shows better classification accuracy than the existing typical algorithms.
作者 李昂 LI Ang(Shanghai Maritime University, Shanghai 201306)
机构地区 上海海事大学
出处 《现代计算机(中旬刊)》 2018年第5期3-7,共5页 Modern Computer
关键词 KNN算法 自适应KNN算法 最近邻个数 高斯函数 K-nearest Neighbor Algorithm Adaptive K-nearest Neighbor Algorithm Nearest Neighbors Gaussian Function
  • 相关文献

参考文献2

二级参考文献15

共引文献94

同被引文献34

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部