期刊文献+

基于LPP和l_(2,1)的KNN填充算法

KNN Imputation Algorithm Based on LPP and l_(2,1)
下载PDF
导出
摘要 传统的KNN缺失值填充算法存在没有利用样本间属性的相关性,也没有考虑到保持样本数据本身的结构和去除噪声样本的问题。本文提出利用训练样本重构测试样本从而进行最近邻缺失值填充的方法,该方法重构过程充分利用样本间的相关性,也用到LPP(保局投影)保持数据结构在重构过程中不变,同时引入l2,1范式用于去除噪声样本。在UCI数据集上的仿真实验结果表明,该方法比传统的KNN填充算法以及基于属性信息熵的Entropy-KNN算法有更高的预测准确度。 Traditional KNN missing data filling algorithm does not utilize the correlation between the properties of samples,Neither considers but also does not consider to maintain the sample structures and removes noise samples.In this paper,a method of using training samples to reconstruct the test sample is proposed,which is used for the nearest neighbor missing data imputation.The method makes full use of the correlation between samples,uses the LPP(locality preserving projection)to maintain the data structure in the process of reconstruction,and uses l2,1norm to remove noise samples.Simulation experiments on UCI data sets show that the proposed method has higher prediction accuracy than the traditional KNN algorithm and Entropy-KNN algorithm based on attribute information entropy.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期55-62,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61170131 61263035 61363009) 国家863计划资助项目(2012AA011005) 国家973计划资助项目(2013CB329404) 广西自然科学基金资助项目(2012GXNSFGA060004 2015GXNSFAA139306) 广西八桂创新团队和广西百人计划资助项目
关键词 缺失值填充 K最近邻 保局投影 重构 missing data imputation KNN LPP reconstruction
  • 相关文献

参考文献17

  • 1ZHANG Shi-chao , JIN Zhi , ZHU Xiao-feng. Missing data imputation by utilizing information within incomplete instances[J].Journal of Systems and Software, 2011 ,84(3) :452-459. 被引量:1
  • 2ZHU Xiao-feng, ZHANG Shi-chao , JIN Zhi, et al. Missing value estimation for mixed-attribute data sets[J]. IEEE Trans Knowl Datp. Eng,2011,23(1):110-121. 被引量:1
  • 3ZHANG Shi-chao , ZHANG Cheng-qi. Propagating temporal relations of intervals by matrix[J]. Applied Artificial Intelligence, 2002,16 (1) : 1-27. 被引量:1
  • 4SILVA-RAMIREZ E L, PINO-MEJIAS R, LOPEZ-COELLO M, et al. Missing value imputation on missing completely at random data using multilayer perceptrons[J].Neural Networks,2011,24(1) :121-129. 被引量:1
  • 5BU Fan-yu , CHEN Zhi-kui , ZHANG Qing-chen , et al.Incomplete high-dimensional data imputation algorithm using feature selection and clustering analysis on cloud[EB/OL]. (2015-05-06) [2015-06-22]. http://link. springer. com / article/10.1007 I s11227-015-1433-9. 被引量:1
  • 6RAHMAN M G,ISLAM M Z.FIMUS: a framework for imputing missing values using co-appearance, correlation and similarity analysis[J].Knowl Based Syst,2014,56:311-327. 被引量:1
  • 7ZHU Xiao-feng,HUANG Zi,SHEN Heng-tao v et al.Dimensionality reduction by mixed kernel canonical correlation analysis[J].Pattern Recognition, 2012 ,45(8) : 3003-3016. 被引量:1
  • 8ZHU Xiao-feng,HUANG Zi,CHENG Hong vet al.Sparse hashing for fast multimedia search[J].ACM Trans Inf Syst , 2013,31 (2) : 9. 被引量:1
  • 9ZHU Xiao-feng,HUANG Zi, YANG Yang,et al.Self-taught dimensionality reduction on the high-dimensional smallsized data[J].Pattern Recognition,2013,46(l) :215-229. 被引量:1
  • 10HE Xiao-fei,NIYOGI P.Locality preserving projections[C]//THRUN S, SAUL L K, SCHOLKOPF B. Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, 2004:153-160. 被引量:1

二级参考文献13

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部