摘要
讨论了一类分数阶微分方程m点边值问题{D_(0+)~vu(t)+h(t)f(t,u(t))=0,0<t<1,n-1<v≤n,u(0)=u'(0)=u″(0)=…=u^(n-2)(0)=0,n≥3,(D_(0+u)~α(t))_(t=1)=m-2∑i=1β_iu(η_i),0≤α≤n-2.其中η_i∈(0,1),0<η_1<η_2<…<η_(m-2)<1,β_i∈[0,∞).给出其格林函数及其性质,并通过与一个线性算子相关的第一特征值的讨论,运用不动点指数定理,得到了正解及两个正解存在的结果.最后给出一个例子用以说明定理的应用.
The existence of positive solutions for the fractional differential equation with m -point boundary value problemD v 0+ u(t)+h(t)f(t,u(t))=0,0〈t〈1,n-1〈v≤n,u(0)=u′(0)=u″(0)=…=u (n-2) (0)=0,n≥3,(D α 0+ u(t)) t=1 =∑ m-2 i=1 β iu(η i),0≤α≤n-2is considered under some conditions concerning the first eigenvalue of the relevant linear operator, where η i∈(0,1),0〈η 1〈η 2〈…〈η m-2 〈1,β i∈[0,∞) with ∑ m-2 i=1 β iη i〈1 . The existence of positive solutions is obtained by means of fixed point index theory. Additionally, an example is given for the application of theorem.
作者
赵微
ZHAO Wei(Department of Teaching Education,Daqing Normal University, Daqing 163712,China)
出处
《湖南师范大学自然科学学报》
CAS
北大核心
2018年第3期85-94,共10页
Journal of Natural Science of Hunan Normal University
基金
黑龙江省青年科学基金项目资助(QC2009C99)
大庆市科技计划项目资助(szdfy-2015-63)
关键词
分数阶微分方程
M点边值问题
格林函数
正解
不动点指数
fractional differential equation
m -point boundary value problem
Green function
positive solution
fixed point index