摘要
研究基于l^2(N)上交互作用Fock空间l^2(Γ)中湮灭算子和增生算子的性质.首先,定义在l^2(N)(N上实值平方可和函数所构成的Hilbert空间)上的交互作用Fock空间l^2(Γ);然后,在该空间l^2(Γ)中定义湮灭算子和增生算子;最后,研究此定义之下湮灭算子和增生算子的性质.研究表明:该空间中的湮灭算子和增生算子是有界线性算子且是单位算子,它们除了具有不同位置的交换关系外,还具有相同位置的反交换关系.
In this paper,we present the properties of annihilator and creator operators on the interacting Fock space l^2(Γ). First,we define the interacting Fock space l^2(Γ) based on l^2(N)( l^2(N) denotes the Hilbert space of all real-value square summable function on N),and then introduce the annihilator operator and the creator operator,we also prove the main results of operators in our context. We show that the annihilator operator is a bounded linear unit operator,the same to the creator operator. In addition,they have the canonical commutation relations in different positions and they satisfy the canonical anti-commutation relations in the same position as well.
作者
周玉兰
赵丹丹
ZHOU Yulan;ZHAO Dandan(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gans)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2018年第3期338-342,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11461061)
关键词
交互作用Fock空间
增生算子
湮灭算子
the interacting Fock space
the creator operator
the annihilator operator