期刊文献+

一种直流微电网的灵活虚拟惯性控制策略 被引量:16

A Flexible Virtual Inertia Control Strategy for DC Microgrid
原文传递
导出
摘要 直流微电网的小惯性特点导致的负荷突变、新能源出力波动以及系统故障等扰动都会对系统直流电压的稳定造成严重影响。而交流系统中的虚拟同步发电机(virtual synchronous generator,VSG)控制能够使换流器为系统提供惯性支持,以减小交流系统频率的波动。因此基于VSG控制,根据交、直流系统间各变量的类比和对应关系,文章提出了一种应用于直流微电网的灵活虚拟惯性(flexible virtual inertia,FVI)控制策略,为受到扰动时的直流微网提供灵活可调的惯性支持,以减弱电压波动,改善电能质量。最后通过六端直流微网的实时仿真实验系统验证了所提控制策略的有效性。 Because the inertia of DC microgrid is small,disturbance of load,output power fluctuation of renewable energy and faults in system will seriously affect the stability of DC voltage. The virtual synchronous generator( VSG)control in AC system can make the converter provide the inertia support for the system to reduce the frequency fluctuation in the AC system. A flexible virtual inertia( FVI) control strategy for DC microgrid is proposed on the basis of virtual synchronous generator control,according to the analogy and correspondence relationship between the variables of AC and DC system,in order to supply adjustable inertia support for the DC microgrid,weaken the voltage fluctuation and improve the quality of voltage. Finally,the effectiveness of the proposed control strategy is verified by the real-time simulation experiment system of six-terminal DC microgrid.
作者 邹培根 孟建辉 王毅 王坚 ZOU Peigen;MENG Jianhui;WANG Yi;WANG Jian(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources (North China Electric Power University), Baoding 071003, Hebei Province, China)
出处 《电力建设》 北大核心 2018年第6期56-62,共7页 Electric Power Construction
基金 河北省自然科学基金项目(E2018502152)~~
关键词 虚拟同步发电机(VSG) 直流微电网 灵活虚拟惯性(FVI)控制 电能质量 virtual synchronous generator (VSG) DC microgrid flexible virtual inertia ( FVI ) control power quality
  • 相关文献

参考文献12

二级参考文献223

  • 1陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33. 被引量:122
  • 2龙源,李国杰,程林,孙元章.利用光伏发电系统抑制电网功率振荡的研究[J].电网技术,2006,30(24):44-49. 被引量:41
  • 3Kakigano H, Miura Y, Ise T, et al. Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house[C]. 2008 IEEE Power and Energy Society General Meeting--Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-8. 被引量:1
  • 4Marnay C, Robio F J, Siddiqui A S. Shape of the micro-grid[C]. IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 2001, 1: 150-153. 被引量:1
  • 5Barnes M, Ventakaramanan G, Kondoh J, et al. Real- world micro-grids-an overview[C]. IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 2007: 1-8. 被引量:1
  • 6Fred C Lee. Sustainable Buildings and Nanogrids[EB/ OL]. http://www.cpes.vt.edu/publications/proceedings/ conference/2010/index.php, 2010. 被引量:1
  • 7Mark Mc Granaghan, Thomas Ortmeyer,. David Crudele, et al. Renewable systems interconnection study: advanced grid planning and operations[R]. Sandia National Laboratories, 2008. 被引量:1
  • 8My Ton, Brian Fortenbery Data Center Efficiency DC Power for Improved [R/OL]. http://hightech. lbl.gov/dc-powering/, 2008. 被引量:1
  • 9Ciezki J G, Ashton R W. Selection and stability issues associated with a navy shipboard DC zonal electric distribution system[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 665-669. 被引量:1
  • 10Chun Lien Su, Chun Teng Yeh. Probabilistic security analysis of shipboard DC zonal electrical distribution systems[C]. IEEE Power and Energy Society General Meeting, 2008:1-7. 被引量:1

共引文献1150

同被引文献165

引证文献16

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部