期刊文献+

基于IMM-极限迭代UFIR的机动目标跟踪算法 被引量:2

Maneuvering Target Tracking Algorithm Based on IMM-Ultimate Iterative UFIR
下载PDF
导出
摘要 为提高非高斯噪声条件下机动目标跟踪的精度,提出基于交互式多模型极限迭代无偏有限脉冲响应滤波(IMM-极限迭代UFIR)算法。采用对噪声统计特性不敏感的极限迭代无偏有限脉冲响应滤波(UFIR)作为其子滤波器,对各模型进行状态估计,最后通过对各模型的输出结果综合得到机动目标状态。仿真结果表明,在噪声条件复杂的情况下,该算法比交互式多模型卡尔曼滤波(IMM-KF)具有更高的跟踪精度和稳定性,计算量小于IMM-PF,算法能较好地兼顾跟踪精度和计算量两方面性能。 To improve the precision of maneuvering target tracking under non-Guassian noise condition,a tracking algorithm based on Interactive Multi-Model ultimate iterative Unbiased Finite Impulse Response( IMM-ultimate iterative UFIR) filter is proposed. The algorithm takes the ultimate iterative UFIR,which has lower sensitivity to errors in the noise statistics,as its sub-filter to estimate the state of each model,and the state of maneuvering target is obtained by fusing the states of multiple models. Simulation results show that:under complex noise conditions,IMM-iterative UFIR has a higher precision than that of the Interactive Multiple Model Kalman Filter( IMM-KF),and less calculation cost than that of IMM-PF,which has a good balancing between the tracking precision and calculation amount.
作者 武青海 曲朝阳 WU Qing-hai;QU Zhao-yang(School of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China;School of Information Engineering, Northeast Dianli University, Jilin 132012, China)
出处 《电光与控制》 北大核心 2018年第6期35-38,51,共5页 Electronics Optics & Control
基金 吉林省科技发展计划项目(20180623004TC)
关键词 机动目标 目标跟踪 交互式多模型 极限迭代UFIR 状态估计 maneuvering target target tracking interactive multi-model ultimate iterative UFIR state estimation
  • 相关文献

参考文献2

二级参考文献26

  • 1BLOM H A P,BARSHALOM Y.The interacting multiple algorithm for systems with Markovian switching coefficients[J].IEEE Transactions on Automatic Control,1987,33(8):780-783. 被引量:1
  • 2HAYKIN S.Congition is the key to the next generation of radar systems[J].IEEE 13th Digital Signal Processing workshop and 5th IEEE Signal Processing Education Workshop,2009(4):463-467. 被引量:1
  • 3ARASARATNAM I,HAYKIN S.Cubature Kalman filters[J].IEEE Transaction on Automatic Control,2009,54(6):1254-1269. 被引量:1
  • 4FERNANDEZ C,VILAVALLS J.Bayesian nonlinear filtering using quadrature and cubature rules applied to sensor data fusion for positioning[C]//IEEE International Conference on Communications,2010:1-5. 被引量:1
  • 5臧荣春,崔平远,崔祜涛,金艺.基于IMM-UKF的组合导航算法[J].控制理论与应用,2007,24(4):634-638. 被引量:16
  • 6Houles A, Bar-Shalom Y. Multisensor tracking of a maneuvering target in clutter[J]. IEEE Transactions on Aerospace and Elec?tronic Systems,1989,25(2) :176-188. 被引量:1
  • 7Bar-Shalom Y, Birmiwal K. Variable dimension filter for maneu?vering target tracking[J] . IEEE Transactions on Aerospace and Electronic Systems, 1982,18 (5) :621-629. 被引量:1
  • 8Magrill D T. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control, 1965, 10(4) :434439. 被引量:1
  • 9Nadarajah N, Tbarmarasa R, McDonald M, et al. IMM forward fil?tering and backward smoothing for maneuvering target tracking[J] . IEEE Transactions on Aerospace and Electronic Systems, 2012,48(3) :2673-2678. 被引量:1
  • 10Gibbs B. Advanced Kalman filtering, least-squares and modeling[M]. New York: Wiley ,2011. 被引量:1

共引文献19

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部