期刊文献+

我国铁路重载铁路单元式列车组合模型研究 被引量:3

A Study on the Combination Models of Heavy-Haul Unit Trains in China
下载PDF
导出
摘要 重载铁路运输能力大、效率高、成本低、节能环保,是国际铁路运输未来的趋势,但重载铁路单元式列车的组织方案还有待加强。在建立重载铁路单元式列车组合模型的基础上,分析实际到达时刻与需求时刻之间差值的关系,该时间差应符合0-1整数规划。通过遗传算法求得模型解的初始上界,再通过分支定界算法求得最优解,得到重载铁路系统中重载铁路单元式列车的最优组合方案,并且验证该模型可以缩减整体运输过程的周转时间。最后,分析重载铁路单元式列车组合方案与通道通过能力和组合站、分解站编组能力之间的关系,为运营者提供参考。 With such strengths as a bigger capacity, a higher cost-efficiency, less energy consumption and enhanced environmental friendliness, heavy railway haulage is recognized worldwide as the future of rail transportation, while the management strategies for heavy-haul unit trains still have potential to be improved. This paper, based on a study of the combination models of heavy axle loads, analyzes the correlation between the actual time of arrival and the required time. It finds the difference between the two is in accordance with the integer linear programming model, which stands between 0-1. After determining an upper bound through the genetic algorithm, the article generates an optimal solution by the branch-and-bound algorithm, which contributes the optimal combination plan for heavy-haul unit trains. It also conducts a computational experiment that proves the effectiveness of the new approach in reducing turnover time of rail transportation. Moreover, the paper analyzes the relationship among different variables, including the combination plans for heavy-haul units, the carrying capacities of passages, and the marshalling capacities of the different stations. The findings are expected to serve as reference points for train operators.
作者 王宇强 魏玉光 WANG Yu-qiang,WEI Yu-guang,School of Traffic and Transportation;Beijing Jiaotong University,
出处 《铁道运输与经济》 北大核心 2018年第6期23-28,共6页 Railway Transport and Economy
基金 国家自然科学基金项目(11301334) 上海市科委计划项目(14DZ2280200)
关键词 重载铁路 重载铁路单元式列车 遗传算法 分支定界算法 Heavy-Haul Railway Heavy-Haul Unit Train GeneticAIgorithm Branch and Bound Algorithm
  • 相关文献

参考文献4

二级参考文献17

共引文献23

同被引文献18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部