期刊文献+

Ammonia sensing using arrays of silicon nanowires and graphene 被引量:2

Ammonia sensing using arrays of silicon nanowires and graphene
原文传递
导出
摘要 Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitiv- ity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amp- litude by a factor of -7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs in- creases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffu- sion processes. Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitiv- ity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amp- litude by a factor of -7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs in- creases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffu- sion processes.
出处 《Journal of Semiconductors》 EI CAS CSCD 2018年第6期112-118,共7页 半导体学报(英文版)
基金 financial support of EPSRC via the EEE department
关键词 NH3 sensor silicon nanowires resistive sensor low frequency noise GRAPHENE NH3 sensor silicon nanowires resistive sensor low frequency noise graphene
  • 相关文献

参考文献1

二级参考文献3

共引文献19

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部