期刊文献+

基于社交媒体的用户情绪建模与异常检测 被引量:3

User Emotion Modeling and Anomaly Detection Based on Social Media
下载PDF
导出
摘要 为了对新浪微博用户的异常情绪进行检测和分析,该文提出一种基于多元高斯模型和幂律分布的异常检测方法,根据联合概率密度值判断用户是否出现情绪异常。在实验部分,按照不同用户的异常检测准确率为83.49%,按照不同月份为87.84%。分布测试表明,单个用户的中性、快乐和悲伤情绪服从正态分布,而惊讶和愤怒情绪则不服从;群体发布的微博的情绪服从"幂律分布",而单个用户则不服从。该文引入多元高斯模型来进行社交媒体的异常情绪的检测,通过联合概率密度值量化了异常情绪检测。当数据充足时,该方法可以检测用户或者某个社交平台每一周甚至每一天的异常情绪,这对个体异常情绪检测、网络舆情挖掘、大规模爆发事件预防以及公共安全监测有一定意义。 For abnormal emotional detection among micro-blog users,this paper proposes ananomaly detection method based on the joint probability density of multivariate Gaussian model and power-law distribution.In the experiments,the anomaly detection accuracy is 83.49%in terms of individual user,and 87.84%in terms of month.Statistics reveals that individual users' neutral,happy and sad emotions fall into the normal distribution,but the amazed and angry emotions are not.Emotions of micro-blogs released by groups confirm to the power-law distribution,but not those by the individual.
作者 孙晓 张陈 任福继 SUN Xiao;ZHANG Chen;REN Fuji(School of Conpater and Information Hefei University of Technology, Hefei, Anhui 230009, China;Faculty of Engineering, University of Tokushima, Tokushima, 7700855,Japan)
出处 《中文信息学报》 CSCD 北大核心 2018年第4期120-129,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61432004) 安徽省自然科学基金(1508085QF119) 中国博士后科学基金(2015M580532)
关键词 社交网络 异常检测 多元高斯分布 联合概率密度 social network anomaly detection multivariate gaussian distribution joint probability density
  • 相关文献

参考文献6

二级参考文献36

  • 1ARUN Q, BELLE T. Mining blog stories using community- based and temporal clustering [ C ]//CIKM 06 Proceedings of the 15th ACM International Conference on Information and Knowledge Management. New York,USA, 2006: 58-67. 被引量:1
  • 2LIN Y R, HARI S, YUN C, et al. Splog detection using self-similarity analysis on blog temporal dynamics [ C ]//Pro- ceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web. New York, USA, 2007: 1-8. 被引量:1
  • 3LIM S H, KIM S W. Determining content power users in a blog network[ C]//Proceedings of the 3rd Workshop on Social Network Mining and Analysis. New York, USA,2009:52-59. 被引量:1
  • 4GILAD M, DAVID C. Blocking blog spare with language mod- el disagreement [ C ]//AIRWeb05. Chiba, 2005 : 11-15. 被引量:1
  • 5JONATHAN L. Retrieval and feedback models for blog feed search [ C ]//Proceedings of the 31 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA,2008: 347-354. 被引量:1
  • 6SHRAVAN G, LI J. Micro-blog: sharing and querying content through mobile phones and social participation [ C ]//Proceedings of the 6th International Conference on Mobile Systems, Applications and Services. New York, USA,2008 : 174-186. 被引量:1
  • 7CRASWELL N, SZUMMER M. Random walks on the click graph [ C ]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA,2007, 239-246. 被引量:1
  • 8GYONGYI Z, GARIA-MOLINA H. Link spam alliances [ C ]//Proceedings of the 31 st International Conference on Very Large Data Bases. New York, USA,2005:517-528. 被引量:1
  • 9HE Kun, LUAN Xin-cheng, LI Chun-hua, et al. Gaussian noise remov- al of image on the local feature[ J]. Intelligent Information Technol- ogy Application,2008,3 ( 1 ) : 867- 871. 被引量:1
  • 10JOHN S T, CRISTIANINI N. Kernel methods for pattern analysis [ M ]. UK : Cambridge University Press ,2004. 被引量:1

共引文献53

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部