期刊文献+

基于提升系数的微博异常排名检测方法 被引量:5

A boost factor based detection method for abnormal rank of microblogging
下载PDF
导出
摘要 通过操纵微博提升排名的行为严重干扰了正常的微博排名秩序,现有的微博异常排名检测方法忽略了微博拓扑对微博排名的影响.文中通过比较微博网络中随机链接的微博BlogRank值与全连接、环状拓扑微博联盟中目标微博的BlogRank值,提出一种基于提升系数的微博异常排名检测方法.在仿真数据集的实验表明,该方法能通过微博拓扑有效地识别微博异常排名. The behavior of promoting the rank of microblogging through the manipulation of other microbloggings has shown to severely disturb the normal order.Current methods ignore the influence of microblogging topology on the rank of microblogging.In this paper,we analyze the BlogRank of random link,full-mesh and ring topology microblogging alliance respectively,and then we proposed a method to detect abnormal microblogging rank using the boost factor of microblogging.Experimental results showed that the proposed method was effective in distinguishing the abnormal rank of microblogging at topology level.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第4期488-493,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61272186 61100007) 黑龙江省博士后基金资助项目(LBH-Z12068) 哈尔滨工程大学自由探索基金资助项目(HEUCF100608)
关键词 微博异常排名 微博拓扑 提升系数 BlogRank算法 abnormal rank of microblogging microblogging topology boost factor BlogRank algorithm
  • 相关文献

参考文献13

二级参考文献46

共引文献117

同被引文献25

  • 1蒋亚婷,李兵.微博数据驱动的用户排名方法研究[J].图书情报工作,2012,56(S2):310-313. 被引量:2
  • 2LUNDEN I. Analyst: Twitter passed 500M users in June 2012, 140M of them in US[ EB/OL]. [2013-03-26]. http ://techcrunch. com/2012/07/30/analyst-twitter-passed- 500m-users-in-june-2012-140m-of-them-in-us-jakarta-big- gest-tweeting-city/. 被引量:1
  • 3RAMAGE D, DUMAIS S, LIEBLING D. Characterizing microblogs with topic models [C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. Washington, DC, USA: The AAAI Press, 2010: 130-137. 被引量:1
  • 4YANG Y M, PIERCE T, CARBONELL J. A study of retro-spective and on-line event detection [ C ]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1998: 28-36. 被引量:1
  • 5ALLAN J, CARBONELL J, DOODINGTON G, et al. Topic detection and tracking pilot study final report[ C ]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. Lansdowne, USA, 1988: 194-218. 被引量:1
  • 6SAKAKI T, OKAZAKI M, MATSUO Y. Earthquake shakes Twitter user: real-time event detection by social sensors [C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010: 851-861. 被引量:1
  • 7GARCIA D, GARAS A, SCHWEITZER F. Positive words carry less information than negative words [ J ]. EPJ Data Science, 2012, 1 (1) : 1-16. 被引量:1
  • 8ZHANG Huaping, YU Hongkui, XIONG Deyi, et al. HHMM-based Chinese lexical analyzer ICTCLAS [ C ]// Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing. Stroudsburg, USA, 2003, 17 : 184- 187. 被引量:1
  • 9Ibrahim Uysal, W Bruce Croft. User Oriented Tweet Ranking: a Filtering Approach to Microblogs [ P ]. Proceedings of the 20th ACM International Conference on Information and Knowledge Management,2011 : 2261 - 2264. 被引量:1
  • 10Tomas Majer, Marian Simko. Leveraging Microblogs for Re- source Ranking[P]. Proceedings of the 38th International Con-ference on Current Trends in Theory and Practice of Computer Science. 2012 : 518 - 529. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部