摘要
以木质素磺酸钠(SL)和甲醛为原料,水为溶剂,在碱性条件下合成了羟甲基木质素磺酸钠(HSL),分析了反应温度、反应时间、p H、溶剂用量、甲醛加入量对HSL羟甲基含量的影响。建立了HSL羟甲基含量的二次回归方程,在单因素实验的基础上,使用响应面分析法中的Box-Behnken设计对HSL的合成工艺进行优化。采用FTIR,~1H NMR,ESEM对原料及产物结构和形貌进行了表征。表征结果显示,合成了目标产物HSL。实验结果表明,合成HSL的较佳工艺条件为p H=11,反应温度90℃,反应时间5 h,m(SL)∶m(甲醛)=1∶0.15,溶剂用量20 m L;在此条件下,合成的HSL的羟甲基含量为12.110%;实验结果与预测值相差较小,说明方程拟合度较好,能有效预测实际结果。
Hydroxymethyl sodium lignin sulfonate(HSL)was synthesized with sodium lignosulfonate(SL)and formaldehyde as raw materials and water as solvent under alkaline conditions,and the effects of reaction temperature,reaction time,p H,solvent dosage and quantity of added formaldehyde on the hydroxymethyl content of the HSL were analyzed.A quadratic regression equation of the hydroxymethyl content of the HSL was established.Based on a single factor experiment,the synthesis process of the HSL was optimized by Box-Behnken design in response surface methodology.The structures and morphologies of the raw materials and the product were characterized by FTIR,~1H NMR and ESEM.The characterization results showed that the target product HSL was synthesized.The experimental result showed that the preferred conditions for the synthesis of the HSL were p H 11,reaction temperature 90℃,reaction time 5 h,m(SL)∶m(formaldehyde)1∶0.15,solvent dosage20 m L.Under these conditions,the hydroxymethyl content of the HSL was 12.11%.The difference between the experimental result and a predicted value is small,thereby indicating a good fitting degree of the equation and allowing for effective prediction of an actual result.
作者
郭睿
王宁
张瑶
韩双
高弯弯
Guo Rui;Wang Ning;Zhang Yao;Han Shuang;Gao Wanwan(Key Laboratory of Auxiliary Chemistry&Technology for Chemical Engineering,Ministry of Education,College of Chemistry and Chemical Engineering,Shaanxi University of Science&Technology,Xi’ an Shaanxi 710021,China)
出处
《石油化工》
CAS
CSCD
北大核心
2018年第5期437-442,共6页
Petrochemical Technology
基金
陕西省重点研发计划项目(2017ZDXM-GY-087)
陕西省重点研发计划项目(2017GY-185)
关键词
木质素磺酸钠
甲醛
羟甲基化
结构表征
响应面法
sodium lignosulfonate
formaldehyde
hydroxymethylation
structure characterization
response surface method