期刊文献+

基于非线性耦合双稳态随机共振的轴承微弱故障信号增强检测方法研究 被引量:9

Research on the Enhanced Detection Method of Bearing Fault Weak Fault Signal Based on Nonlinear Coupled Bistable Stochastic Resonance
下载PDF
导出
摘要 针对滚动轴承微弱故障信号难以检测的难题,提出一种基于新型非线性耦合双稳态随机共振模型的轴承微弱故障信号增强检测方法。噪声背景下,随机共振可以实现微弱信号的增强输出,提高微弱信号特征的检测。提出的非线性耦合双稳态系统是由两个单一双稳态系统经非线性方式耦合而成,通过分析耦合系数、阻尼系数随着噪声强度改变的信噪改善比响应特性曲线图研究了不同参数对随机共振现象的影响。结果表明,耦合双稳系统比单一双稳态系统具有更强随机共振现象的产生。最后采用模型对轴承故障微弱信号进行了增强检测应用,所提出的非线性耦合双稳态随机共振能够实现在复杂的噪声背景下对微弱故障信号的检测。 In order to solve the problem that the weak fauh signal of rolling bearing is difficult to be detected, a new method based on a new nonlinear coupled bistable stochastic resonance model is proposed. Under the background of noise, stochastic resonance can enhance the output of weak signal and improve the detection of weak signal. The nonlinear coupled bistable system proposed in this paper is composed of two single bistable system with nonlinear coupling. The influence of different parameters on the phenomenon of stochastic resonance are researched through the analysis of the damping coefficient and the coupling coefficient, with the noise intensity change SNIR (signal to noise improvement ratio) response curve. The results show that the coupled bistable system is more robust than the single bistable system. In the end, the bearing fault of weak signal was enhanced by using this detection model, the proposed nonlinear coupled bistable stochastic resonance can detect weak fauh signal noise in complex background.
作者 时培明 孙鹏 袁丹真 SHI Pei-ming, SUN Peng, YUAN Dan-zhen(School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, Chin)
出处 《计量学报》 CSCD 北大核心 2018年第3期373-376,共4页 Acta Metrologica Sinica
基金 国家自然科学基金(51475407) 河北省自然科学基金(E2015203190) 河北省人社厅"三三三人才工程"培养项目(A2016002018)
关键词 计量学 轴承故障诊断 随机共振 耦合 信噪改善比 信号检测 metrology fault diagnosis of bearing stochastic resonance coupled signal to noise improvement ratio signal detection
  • 相关文献

参考文献4

二级参考文献39

共引文献174

同被引文献72

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部