期刊文献+

具有信息干预的随机SIRS传染病模型正解的存在性与灭绝性 被引量:4

The existence of positive solution and extinction of a stochastic SIRS epidemic model with information intervention
下载PDF
导出
摘要 把白噪声和信息干预同时考虑到SIRS传染病模型中,从而得到了一个新的随机SIRS模型.通过构造适当的C2函数,得到模型正解存在性和唯一性的充分条件,并对该系统模型的灭绝性进行了分析.研究结果表明,信息干预和随机噪声可以降低人群感染的峰值.最后通过数值模拟验证了分析结果. The new stochastic SIRS epidemic model,taking into account white noise and information intervention,is obtained.Using to construct appropriateC2 functions,sufficient conditions of existence and uniqueness positive solution are obtained.The extinction is studied for a stochastic SIRS epidemic model with information intervention.A study of the stochastic SIRS epidemic model reveals that the peak of population infected can be decreased by information intervention and random noise.Finally,we demonstrate the analytical results by numerical simulations.
作者 张启敏 曹博强 牟晓洁 Zhang Qimin;Cao Boqiang;Mu Xiaojie(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,CHina;School of Mathematics and Information Science,Beifang University of Nationalities,Yinchuan,750021,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期1-7,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11461053) 宁夏大学研究生创新项目(GIP2017040)
关键词 SIRS传染病模型 信息干预 环境噪声 灭绝性 SIRS epidemic model information intervention environment fluctuation extinction
  • 相关文献

参考文献4

二级参考文献49

  • 1徐文雄,张仲华,成芳.一类SIS流行病传播数学模型全局渐近稳定性[J].四川师范大学学报(自然科学版),2004,27(6):585-588. 被引量:11
  • 2Kermack, W. O., Mckendrick, A. G.: Contributions to the mathematical theory of epidemics (Part Ⅰ). Proc. R. Sin., AllS, 700-721 (1927). 被引量:1
  • 3Beretta, E., Hara, T., Ma, W., et al.: Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal., ,17, 4107-4115 (2001). 被引量:1
  • 4Meng, X. Z., Chen, L. S.: The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl. Math. Comput., 197, 528-597 (2008). 被引量:1
  • 5Tchuenche, J. M., Nwagwo, A., Levins, R.: Global behaviour of an SIR epidemic model with time delay. Math. Meth. Appl. Sci., 30, 733-749 (2007). 被引量:1
  • 6Zhang, F. P., Li, Z. Z., Zhang, F.: Global stability of an SIR epidemic model with constant infectious period. Appl. Math. Comput., 199, 285- 291 (2008). 被引量:1
  • 7Lajmanovich, A., York, J. A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci., 28, 221-236 (1976). 被引量:1
  • 8Beretta, E., Capasso, V.: Global stability results for a multigroup SIR epidemic model. In: (T. G. Hallam, L. J. Gross and S. A. Lenin, eds.) Mathematical Ecology, World Scientific, Singapore, 1986, pp. 317-342. 被引量:1
  • 9Guo, H. B., Li, M. Y., Shuai, Z. S.: Global stability of the endemic equilibrium of multigroup SIR epidemic models. Canad. Appl. Math. Quart., 14, 259-284 (2006). 被引量:1
  • 10Hethcote, H. W.: An immunization model for a heterogeneous population. Theor. Popu. Biol., 14, 338 -349 (1978). 被引量:1

共引文献13

同被引文献10

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部