期刊文献+

多因子进化算法研究进展 被引量:5

Recent advances in multifactorial evolutionary algorithm
下载PDF
导出
摘要 多因子优化是一类新的优化问题。多因子进化算法受到多因子遗传模型的启发,利用进化个体的单一种群,能够同时求解跨域的多个优化问题。它属于一种文化基因算法,是智能计算领域新近涌现的研究热点。介绍了多因子进化算法的生物学基础、算法流程,以及文化基因算法的基本概念。然后从工作机理、算法改进、典型应用领域等角度,系统总结了前人的理论和应用成果。最后,指出了将来研究所面临的若干挑战和机遇,以推动学科发展。 Multifactorial optimization is a new category of optimization problems. Inspired by multifactorial inheritance model, multifactorial evolutionary algorithm can solve multiple cross-domain optimization problems simultaneously using a single population of evolving individuals. Regarded as belonging to the realm of memetic algorithm, it has become a hot issue emerging recently in intelligent computation. The biological basis and algorithm procedure of multifactorial evolutionary algorithm and the concept of memetic algorithm are firstly introduced in this paper. Major theoretical and application results are then reviewed critically from the perspective of working mechanism, algorithm improvement and typical application fields. Finally a number of future challenges and opportunities are proposed to help move the field forward.
作者 徐庆征 杨恒 王娜 伍国华 江巧永 XU Qingzheng;YANG Heng;WANG Na;WU Guohua;JIANG Qiaoyong(College of Information and Communication, National University of Defense Technology, Xi'an 710106, China;College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第11期15-20,40,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61305083 No.61603404)
关键词 多因子进化算法 多因子优化 进化算法 选型交配 垂直文化传播 文化基因算法 multifactorial evolutionary algorithm multifactorial optimization evolutionary computation assortativemating vertical cultural transmission memetic algorithm
  • 相关文献

参考文献2

二级参考文献30

  • 1李青,钟铭,李振福,刘兆健.用于集装箱配装问题的Memetic算法[J].辽宁工程技术大学学报(自然科学版),2006,25(3):450-452. 被引量:2
  • 2理查德·道金斯.自私的基因[M].长春:吉林人民出版社,1998. 被引量:23
  • 3马向真.社会生物学及其与精神分析学之比较[EB/OL].http://www. psych. gov. an/article/article_view.asp?id= 3167,2003. 被引量:1
  • 4P. MOSCATO.On Evolution,Search, Optimization, Genetic Algorithms and Martial Arts:Towards Memetic Algorithms[R].Pasadena, California, USA:Tech.Rep. Caltech Concurrent Computation Program, Report 826,California Institute of Technology, 1989. 被引量:1
  • 5NORA SPEER,CHRISTIAN SPIETH,ANDREAS ZELL. A Memetic Clustering Algorithm for the Functional Partition of Genes Based on the Gene Ontology[A].the Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology[C].San Diego,USA,2004.252-259. 被引量:1
  • 6J. DIGALAKIS, K. MARGARITIS. Performance comparison of memetic algorithms[J].Applied Mathematics and Computation, 2004,158(1):237-252. 被引量:1
  • 7PETER MERZ.Analysis of gene expression profiles: an application of memetic algorithms to the minimum sum-of- squares clustering problem[J]. BioSystems, 2003, (72):99-109. 被引量:1
  • 8P.MOSCATO,M.G.NORMAN. A Memetic Approach for the Traveling Salesman Problem: Implementation of a Computational Ecology for Combinatorial Optimization on Message-Passing Systems[A].Parallel Computing and Transputer Applications[C]. Amsterdam,The Netherlands:IOS Press, 1992. 177-185. 被引量:1
  • 9P. MOSCATO, F. TINETTI. Blending Heuristics with a Population-Based Approach:A "Memetic" Algorithm for the Traveling Salesman Problem[R].Argentina:Universidad National de La Plata,1994. 被引量:1
  • 10XIN XU,HAN-GEN HE.A Theoretical Model and Convergence Analysis of Memetic Evolutionary Algorithms[A]. International Conference on Natural Computation[C].Changsha, China, 2005. 1035-1043. 被引量:1

共引文献36

同被引文献13

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部