期刊文献+

基于shapelets学习的多元时间序列分类 被引量:3

Multivariate Time Series Classification Based on Shapelets Learning
下载PDF
导出
摘要 多元时间序列广泛存在于日常生活中的各个领域,多元时间序列分类是从时间序列数据中获取信息的基本方法。目前,时间序列分类研究面临着相似性度量方法特殊、原始数据维度高等问题,现有的多元时间序列分类方法的分类性能仍有待提高。文中提出一种基于shapelets学习的多元时间序列分类方法。首先,提出了新的正则化最小二乘损失学习框架下的shapelets学习方法,在此基础上采用基于shapelets的一元时间序列分类方法对多元时间序列的每维一元数据进行分类,随后由各维上的分类结果投票决定多元时间序列的最终分类结果。实验证明,所提方法在多元时间序列分类问题中能够取得较高的分类精度。 Multivariate time series data exist in a wide range of real-life domains,and multivariate time series classification is a basic method of obtaining information from time series data.At present,time series classification is suffered from the problem that the similarity measure of time series data is special and the dimension of the original data is high,thus the classification performance of the existing multivariate time series classification methods still need to be improved.This paper presented a multivariate time series classification method based on shapelet learning.At first,this paper established a shapelets learning method under a regularized least squares loss learning framework,and the time series classification method with one dimension based on shapelets is used to classify the vrivariate data of multivariate time series.Then the final resut of the multivariate time series is determined through plurality voting.Experimental results indicate that the proposed method achieves high classification accuracy when processing multivariate time series classification problem.
作者 赵慧赟 潘志松 ZHAO Hui-yun;PAN Zhi-song(College of Command and Control Engineering,The Army Engineering University of PLA, Nanjing 210007, China)
出处 《计算机科学》 CSCD 北大核心 2018年第5期180-184,219,共6页 Computer Science
基金 国家自然科学基金(61473149)资助
关键词 多元时间序列 分类 shapelets shapelets学习 Multivariate time series Classification Shapelets Shapelets learning
  • 相关文献

参考文献2

二级参考文献62

  • 1Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO 1993). 1993:69-84. 被引量:1
  • 2Azzouzi M, Nabney I T. Analysing time series structure with Hidden Markov Models[C]//Proceedings of the IEEE Confe- rence on Neural Networks and Signal Processing. 1998:402-408. 被引量:1
  • 3Bagnall A, Janacek G J, Powell M. A likelihood ratio distance measure for the similarity between the fourier transform of time series[C]//Proceedings of the Advances in Knowledge Disco- very and Data Mining, 9th Pacific-Asia Conference (PAKDD2005). 2005:737 743. 被引量:1
  • 4Bagnall A, Davis I., Hills J, et al. Transformation based ensem- bles for time series elassification[C]//Proeeedings of the 2012 SIAM International Conference on Data Mining (SDM 2012). 2012:307 318. 被引量:1
  • 5Balakrishnan S, Madigan D. Decision trees for functional varia- bles[C] // Proceedings of the 2006 International Conference on Data Mining (ICDM 2006). 2006:798 802. 被引量:1
  • 6Batista G, Wang X, Keogh E. A complexity invariant distance measure for time series[C]//Proeeedings of the eleventh SIAM conference on data mining (SDM 2011 ). 2011 : 699-710. 被引量:1
  • 7Berndt D J,Clifford J. Using dynamic time warping to find pat terns in time series[C]//KDD Workshop. 1994 : 359 370. 被引量:1
  • 8Buza K. Fusion methods for time-series classification[D]. Uni- versity of Hildesheim,Germany, 2011. 被引量:1
  • 9Chan K, Fu A W. Efficient time series matching by wavelets [C]// Proceedings of the 15th International Conference on Data Engi- neering (1CDE 1999). 1999;126-133. 被引量:1
  • 10Cheng H, Yan X, Han J, et al. Discriminative frequent pattern analysis for effective classification[C]//Proeeedings of the 23rd International Conference on Data Engineering (ICDE 2007). 2007:716-725. 被引量:1

共引文献60

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部