期刊文献+

基于深度学习的虹膜识别方法研究 被引量:3

Research on iris recognition based on depth learning
下载PDF
导出
摘要 随着信息化社会的高速发展,人们生活水平的不断提升,与此同时人们开始越来越注重身份验证的准确性、安全性、稳定性。人体生物特征表现出了几大特点:唯一性、稳定性、不可复制。本文通过深度学习技术简述、分析特性、探究支持,研究了生物特征识别中的虹膜识别方法。虹膜识别性能指标在应用中相比其他生物指标高,具有很高的研究价值。希望通过本次对虹膜识别方法的探究,促进虹膜识别在人工智能方面的新发展。 With the rapid development of the information society,people's living standard has been continuously improved. At the same time,more and more attention has been paid to the accuracy,security and stability of authentication. The biological characteristics of human body shows several characteristics: uniqueness,stability and non-reproduction. In this paper,through technical discussion,characteristics analysis and support exploration of deep learning,iris recognition of the biometric recognition is researched. Simulation shows that the technological index of iris recognition performance in the application is higher than other biometric identification index,which has high research value. It is expected that this research could promote the new development of iris recognition in artificial intelligence.
作者 陈虹旭 李晓坤 郑永亮 邵娜 杨磊 刘磊 CHEN Hongxu;LI Xiaokun;ZHENG Yongliang;SHAO Na;YANG Lei;LIU Lei(Heilongjiang Hengxun Technology Co. ,Ltd., Harbin 150090, China)
出处 《智能计算机与应用》 2018年第2期108-111,115,共5页 Intelligent Computer and Applications
基金 中小企业创新基金(2017FF1GJ023) 专利优势示范企业基金(2017YBQCZ029) 国家自然科学基金(81273649)
关键词 深度学习 生物特征识别 虹膜识别 人工智能 deep learning biometric identification iris recognition artificial intelligence
  • 相关文献

参考文献2

二级参考文献13

  • 1DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 (11):1148-1161. 被引量:1
  • 2WILDES R, ASMUTH J, GREEN G, et al.. A machine-vision system for iris recognition[J]. Machine Vision and Applications, 1996,9(1):1-8. 被引量:1
  • 3BOLES W W, BOASHASH B. A human identification technique using images of the iris and wavelet transform[J]. IEEE Transactions on Signal Processing, 1998, 46 (4):1185-1188. 被引量:1
  • 4HUANG N, SHEN Z, LONG S, et al.. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. of the Royal Society of London, 1998,454 (1971):903-995. 被引量:1
  • 5SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Inter-face, 2005, 2(5): 443-454. 被引量:1
  • 6DAUGMAN J. How iris recognition works[J]. IEEE Transactions on Circuitsand Systems for Video Technology, 2004, 14(1):21-30. 被引量:1
  • 7何召锋. 虹膜图像预处理与特征分析[D],北京:中国科学院自动化研究所,2010. 被引量:2
  • 8程军圣,张亢,杨宇,于德介.局部均值分解与经验模式分解的对比研究[J].振动与冲击,2009,28(5):13-16. 被引量:133
  • 9韩民,彭玉华,张顺利,孙伟峰.基于经验模态分解的虹膜识别[J].光学学报,2010,30(2):364-368. 被引量:15
  • 10王明达,张来斌,梁伟,段礼祥.基于B样条插值的局部均值分解方法研究[J].振动与冲击,2010,29(11):73-77. 被引量:10

共引文献4

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部