期刊文献+

基于优化的并行AlexNet人脸特征点检测算法 被引量:3

Face points detection based on optimized parallel AlexNet model
下载PDF
导出
摘要 基于深度学习的人脸特征点检测会因环境明亮程度、人体姿态、人脸表情等因素影响检测结果的鲁棒性。采用基于优化的并行卷积神经网络模型,将人脸图像切分为3个互有重叠且各带一个颜色通道的子图像,对应3个不同的模型,将模型结果加权平均,得到人脸特征点坐标。其中模型均采用Alex Net模型,针对子图像尺寸特征修改卷积核尺寸以及输出特征图数量,并引入批归一化层,归一化隐藏层中激活函数的输出值,降低误差的同时减少迭代次数。最后在LFW人脸数据集上进行验证,结果表明,优化的算法准确率达到99%以上,迭代次数减少约4 000次,误差降低了44.57%。 Face points detection based on deep learning will be disturbed by factors like the brightness,the posture and emotion. In this paper,an optimization-based parallel convolutional neural network is adopted to segment the face image into three overlapping sub-images with a color channel,which are connected with three different models. When three models converge,their outputs coordinates weighted average to get final results. The model adopts the Alex Net,and the size of kernel,and parameters of feature maps are modified according to the size of sub-images,in addition the batch normalization layer is used to normalize the activation,reduce iterations and errors. Finally,contrast experiments on the LFW face dataset show that the accuracy of the optimized algorithm reaches over 99%,iterations is about 4 000 steps less,and the error is44. 57% lower.
作者 陈东敏 姚剑敏 Chcn Dongmin;Yao Jianmin(College of Physics & Information Engineering, Fuzhou University, Fuzhou 350002, Chin)
出处 《信息技术与网络安全》 2018年第4期65-70,共6页 Information Technology and Network Security
基金 国家重点研发计划资助(2016YFB0401503) 广东省科技重大专项(2016B090906001)
关键词 深度学习 并行神经网络 人脸特征点定位 批归一化 deep learning parallel convolutional network face points detection batch normalization
  • 相关文献

参考文献1

二级参考文献10

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307. 被引量:1
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324. 被引量:1
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113. 被引量:1
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824. 被引量:1
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93. 被引量:1
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229. 被引量:1
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005. 被引量:1

共引文献150

同被引文献28

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部