期刊文献+

一类积分号外具有非常数因子的弱奇异时滞积分不等式

A Class of Weakly Singular Retarded Integral Inequality with a Nonconstant Factor Outside Integral Sign
下载PDF
导出
摘要 研究了一类积分号外具有非常数因子的非线性弱奇异时滞积分不等式.利用离散Jensen不等式、时滞H?lder积分不等式、特殊函数、变量替换和放大技巧等分析手段,给出了不等式中未知函数的上界估计,推广了已有结果.最后应用所得结果研究了弱奇异积分方程解的定性性质. In this paper,we establish a class of nonlinear retarded weakly singular integral inequalities,which includes a nonconstant factor outside integral sign and a nonconstant term outside integral term.The upper bounds of the embedded unknown functions are estimated explicitly using discrete Jensen inequality,retarded H?lder's integral inequality,special function,the techniques of change of variable and the method of amplification.This generalize some known results.The derived results can be applied to the study of qualitative properties of solutions of fractional integral equations.
作者 覃炜达 王五生 QIN Weida;WANG Wusheng(School of Mathematics and Statistics, Hechi University, Yizhou 546300, Guangx)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期66-71,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11561019和11161018) 广西自然科学基金(2016GXNSFAA380090)
关键词 弱奇异不等式 时滞积分不等式 显式界 弱奇异积分方程 weakly singular integral inequality retarded integral inequality explicit bounds weak singular integral equation
  • 相关文献

参考文献4

二级参考文献53

  • 1Qinghua Ma (Faculty of Information Science and Technology,Guangdong University of Foreign Studies,Guangzhou 510420) Enhao Yang(Dept. of Math.,Jinan University,Guangzhou 510632).BOUNDS ON SOLUTIONS TO SOME NONLINEAR VOLTERRA INTEGRAL INEQUALITIES WITH WEAKLY SINGULAR KERNELS[J].Annals of Differential Equations,2011,27(3):352-360. 被引量:4
  • 2Bellman R.The stability of solutions of linear differential equations[J].Duke Math J,1943,10:643-647. 被引量:1
  • 3Zhang W,Deng S.Projected Gronwall-Bellman’s inequality for integrable functions[J].Math Comput Model,2001,34:394-402. 被引量:1
  • 4Wang W S.A generalized retarded Gronwall-like inequality in two variables and applications to BVP[J].Appl Math Comput,2007,191(1):144-154. 被引量:1
  • 5Wang W S.Estimation on certain nonlinear discrete inequality and applications to boundary value problem[J].Adv DifferenceEqns,2009,2009:708587. 被引量:1
  • 6Choi S K,Deng S,Koo N J,et al.Nonlinear integral inequalities of Bihari-Type without class H[J].Math Inequ Appl,2005,8(4):643-654. 被引量:1
  • 7Xu R,Sun Y G.On retarded integral inequalities in two independent variables and their applications[J].Appl Math Comput,2006,182:1260-1266. 被引量:1
  • 8Kim Y H.Gronwall,Bellman and Pachpatte type integral inequalities with applications[J].Nonl Anal,2009,71:2641-2656. 被引量:1
  • 9Lipovan O.A retarded Gronwall-like inequality and its applications[J].J Math Anal Appl,2000,252:389-401. 被引量:1
  • 10Agarwal R P,Deng S,Zhang W.Generalization of a retarded Gronwall-like inequality and its applications[J].Appl MathComput,2005,165:599-612. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部