摘要
建立一类新的含有求最大运算的非线性时滞Volterra-Fredholm型积分不等式,式中非线性函数没有要求单调性.为了给出未知函数的估计,采用单调化技巧,构造单调化序列,使得后一项比前一项具有更强的单调性.利用分析技巧,给出不等式中未知函数的估计.其结果可以用来研究相应类型的微分积分方程.
In this paper,we establish a new nonlinear retarded Volterra-Fredholm type integral inequality with maxima and we don't require monotonicity of nonlinear functions. We monotonize those functions to make a sequence of functions in which each possesses stronger monotonicity than previous one so as to give an estimation for the unknown function. By adopting novel analysis techniques,the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2016年第3期382-387,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11561019和11161018)
广西自然科学基金(2012GXNSFAA053009)
广西高等学校科研项目(KY2015ZD103和KY2015LX341)