期刊文献+

基于权值不确定性的玻尔兹曼机算法 被引量:2

Algorithms of Boltzmann Machines Based on Weight Uncertainty
下载PDF
导出
摘要 受限制的玻尔兹曼机(RBM)是一种无向图模型.基于RBM的深度学习模型包括深度置信网(DBN)和深度玻尔兹曼机(DBM)等.在神经网络和RBM的训练过程中,过拟合问题是一个比较常见的问题.针对神经网络的训练,权值随机变量(weight random variables)、Dropout方法和早期停止方法已被用于缓解过拟合问题.首先,改变RBM模型中的训练参数,使用随机变量代替传统的实值变量,构建了基于随机权值的受限的波尔兹曼机(weight uncertainty RBM,简称WRBM),接下来,在WRBM基础上构建了相应的深度模型:Weight uncertainty Deep Belief Network(WDBN)和Weight uncertainty Deep Boltzmann Machine(WDBM),并且通过实验验证了WDBN和WDBM的有效性.最后,为了更好地建模输入图像,引入基于条件高斯分布的RBM模型,构建了基于spike-and-slab RBM(ssRBM)的深度模型,并通过实验验证了模型的有效性. Based on the restricted Boltzmann machine(RBM),which is a probabilistic graphical model,deep learning models contain deep belief net(DBN)and deep Boltzmann machine(DBM).The overfitting problems commonly exist in neural networks and RBM models.In order to alleviate the overfitting problem,this paper introduces weight random variables to the conventional RBM model and,then builds weight uncertainty deep models based on maximum likelihood estimation.In the experimental section,the paper verifies the effectiveness of the weight uncertainty RBM.In order to improve the image recognition ability,the paper introduces the spike-and-slab RBM(ssRBM)to weight uncertainty RBM and then builds the deep models.The experiments show that the deep models based on weight random variables are effective.
作者 丁世飞 张健 史忠植 DING Shi-Fei;ZHANG Jian;SHI Zhong-Zhi(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China)
出处 《软件学报》 EI CSCD 北大核心 2018年第4期1131-1142,共12页 Journal of Software
基金 国家自然科学基金(61672522 61379101) 国家重点基础研究发展计划(973)(2013CB329502)~~
关键词 玻尔兹曼机 深度玻尔兹曼机 深度置信网 权值不确定性 RBM (restricted Boltzmann machine) DBM (deep Boltzmann machine) DBN (deep belief net) weight uncertainty
  • 相关文献

参考文献2

二级参考文献86

  • 1Hopfield J J. Neural networks and physical systems with emergent col|ective computational abilities [J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558. 被引量:1
  • 2Hinton G E, Sejnowski T J. Optimal perceptual inference [C]//Proc of the 1983 IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 1983: 448-453. 被引量:1
  • 3Hinton G E, Sejnowski T J. Analyzing cooperative computation [C] //Proc of the 5th Annual Congress of the Cognitive Science Society. New York: ACM, 1983: 2554- 2558. 被引量:1
  • 4Hofstadter D R. The copycat project: An experiment in nondeterminism and creative analogies [DB/OL:. MIT Artificial Intelligence Laboratory Memo 755. (1984- 01-01) [2004-10-01]. http://hdl, handle, net/1721.1/5648. 被引量:1
  • 5Hofstadter D R. A Non-Deterministic Approach to Analogy, Involving the Ising Model of Ferromagnetism[M] //The Physics of Cognitive Processes. Hackensack: World Scientific, 1987. 被引量:1
  • 6Smolensky P. Information Processing in Dynamical Systems: Foundations of Harmony Theory [M]//Parallel Distributed Processing, Vol 1: Foundations. Cambridge: MIT Press, 1986: 194-281. 被引量:1
  • 7Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for Boltzmann machines [J]. Cognitive Science, 1985, 9(1): 147-169. 被引量:1
  • 8Hinton G E. Training products otF experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14 (8) : 1771-1800. 被引量:1
  • 9Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220 (4598) : 671- 680. 被引量:1
  • 10Hinton G E. To recognize shapes, first learn to generate images [J]. Computational Neuroscience: Theoretical Insights into Brain Function, 2007, 165(1): 535-547. 被引量:1

共引文献89

同被引文献18

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部