期刊文献+

Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth 被引量:4

原文传递
导出
摘要 In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal(MIM) based absorber. The proposed structure is made of a Cr-Al_2O_3-Cr multilayer design. At the initial step,the optimum MIM planar design is fabricated and optically characterized. The results show absorption above 0.9 from 400 nm to 850 nm. Afterward, the transfer matrix method is used to find the optimal condition for the perfect light absorption in an ultra-broadband frequency range. This modeling approach predicts that changing the filling fraction of the top Cr layer can extend light absorption toward longer wavelengths. We experimentally proved that the use of proper top Cr thickness and annealing temperature leads to a nearly perfect light absorption from 400 nm to 1150 nm, which is much broader than that of a planar design. Therefore, while keeping the overall process lithography-free, the absorption functionality of the design can be significantly improved. The results presented here can serve as a beacon for future performance-enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity. In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal (MIM) based absorber. The proposed structure is made of a Cr-Al2O3-Cr multilayer design. At the initial step, the optimum MIM planar design is fabricated and optically characterized. The results show absorption above 0.9 from 400 nm to 850 nm. Afterward, the transfer matrix method is used to find the optimal condition for the perfect light absorption in an ultra-broadband frequency range. This modeling approach predicts that changing the filling fraction of the top Cr layer can extend light absorption toward longer wavelengths. We experimentally proved that the use of proper top Cr thickness and annealing temperature leads to a nearly perfect light absorption from 400 nm to 1150 nm, which is much broader than that of a planar design. Therefore, while keeping the overall process lithography-free, the absorption functionality of the design can be significantly improved. The results presented here can serve as a beacon for future performance-enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.
出处 《Photonics Research》 SCIE EI 2018年第3期168-176,共9页 光子学研究(英文版)
基金 Türkiye Bilimsel ve Teknolojik Arastirma Kurumu(TüBITAK) DPT-HAMIT(109E301,113E331) Türkiye Bilimler Akademisi(TUBA)
  • 相关文献

参考文献1

共引文献3

同被引文献9

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部