期刊文献+

改进型并行双非线性模型的ROF系统非线性建模 被引量:1

An Augmented Parallel Two-nonlinear Model Based Modeling for ROF Systems
下载PDF
导出
摘要 包含光载无线通信(ROF)链路和射频功放的ROF前传系统存在严重的静态非线性和记忆效应,提出了改进型并行双非线性广义记忆效应模型(APTGMEM),以准确建模ROF前传系统的强静态非线性和记忆效应。所提出的APTGMEM包含无记忆和广义记忆效应两个独立部分,其中无记忆部分只考虑高阶静态非线性,广义记忆效应部分只考虑低阶次超前广义非线性。文中采用带宽为20 MHz的4G LTE(Long Term Evolution长期演进)信号为测试信号,光模块和峰值输出功率为51d Bm的Doherty功放被用于模型有效性验证。测试结果表明,APTGMEM相比广义记忆多项式模型(GMPM),模型系数减少40%,而建模精度相似,同时比并行双非线性两厢模型(PDNTBM)建模精度提高了3.6 d B,其在建模精度、系数数量和训练复杂度上取得了良好折中。 An Augment Parallel Two-nonlinear General Memory Effect Model( APTGMEM) is proposed in this paper for modeling a wideband ROF( radio-over-fiber) Front Haul Systems with strong memory effects and static nonlinearity. The APTGMEM contains two independent parts as non-memory and generalized memory polynomial sub-models. The non-memory part just considers high-order static nonlinearity,while the generalized memory polynomial part considers the lower order leading general memory effect. To evaluate the performance of APTGMEM,a 20 MHz LTE test signal,an optical module and a Doherty power amplifier with 51 d Bm output peak power are used in modeling measurement. Compared to the Generalized Memory Polynomial Model( GMPM),APTGMEM reduces the model coefficient by 40%,remaining the similar modeling accuracy,while compared to the Parallel Dual-nonlinear Two-box Model( PDNTBM),APTGMEM leads to 3.6 d B improvements in normalized mean square error( NMSE). APTGMEM has a good compromise in modeling accuracy,coefficient quantity and training complexity.
作者 惠明 张萌 张选顺 朱晓维 申东娅 HUI Ming1,2, ZHANG Meng2 , ZHANG Xuan-shun2,3 , ZHU Xiao-wei1, SHEN Dong-ya3(1. State Key Laboratory of Millimeter Waves, Southeast University, Nanfing 210096, China; 2. Henan Provincial Engineering Laboratory of Petroleum Equipment, College of Physics & Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; 3. School of Information Science and Engineering, Yunnan University, Kunming 650091 , Chin)
出处 《微波学报》 CSCD 北大核心 2018年第2期43-46,55,共5页 Journal of Microwaves
基金 国家自然科学基金(61701262和61561052) 中国博士后基金面上项目(2016M591741) 河南省科技公关计划项目(182102410062,182102210114) 河南省高等学校重点科研项目(17A510018)
关键词 功放 记忆多项式 非线性 光载无线通信 power amplifier, memory polynomial (MP) , nonlinearity, radio-over-fiber
  • 相关文献

参考文献3

二级参考文献39

  • 1艾渤,杨知行,潘长勇,张涛涛,阳辉,王勇,陆震.高功率放大器线性化技术研究[J].微波学报,2007,23(1):62-70. 被引量:24
  • 2Doherty W H. A new high efficiency power amplifier for modulated waves[J]. Proc IRE, 1936, 24(9): 1163- 1182. 被引量:1
  • 3Cha J, Kim J, Kim B, Lee J S, Kim S H. Highly Efficient Power Amplifier for CDMA Base Stations Using Doherty Configuration [ C ]. Proc IEEE MTT-S Int Microwave Symposium. Fort Worth, USA:IEEE, 2004. 533-536. 被引量:1
  • 4Kenney J S, Woo W, Ding L, Raich R, Ku H, Zhou G T. The impact of memory effects on predistortion linearization of RF power amplifiers[ C]. Proc 8th Intl. Symposium on Microwave and Optical Technology. Montreal, Canada, 2001. 189-193. 被引量:1
  • 5Schetzen M. The Voherra and Wiener Theories Nonlinear Systems [ M ]. New York : Wiley, 1980. 被引量:1
  • 6Kim J, Konstantinou K. Digital predistortion of wideband signals based on power amplifier model with memory[ J]. Electronics Letters, 2001, 37(11) : 1417-1418. 被引量:1
  • 7Ding L, Raich R, Zhou G T. A Hammerstein predistortion linearization design based on the indirect learning architecture[ C]. Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing. Orlando, USA: IEEE, 2002. 2689-2692. 被引量:1
  • 8Wang T, Uow J. Compensation of nonlinear distortions with memory effects in OFDM transmitters [ C ]. Proc IEEE Global Telecom Conf. Texas, USA: IEEE, 2004. 2398 -2403. 被引量:1
  • 9Liu T, Bounmaiza S, Ghannouchi F M. Augmented Hammerstein Predistorter for Linearization of Broadband Wireless Transmitters [ J ]. IEEE Trans MTT, 2006, 54 (4) : 1340-1349. 被引量:1
  • 10Sano A, Sun L. Identification of Harmmerstein- Wiener system with application to compensation for nonlinear distortion[C]. Proc 41st SICE Annu Conf. Osaka, Japan: IEEE, 2002. 1521-1526. 被引量:1

共引文献14

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部