期刊文献+

结合BV-L^2分解的CV变分水平集模型 被引量:3

CV variational level set model combined with BV-L^2 decomposition
下载PDF
导出
摘要 Chan-Vese(CV)模型基于图像的全局信息,对噪声有一定的鲁棒性,但是对于强噪声污染图像,CV模型并不能取得好的分割效果。笔者结合变分图像分解和CV模型,提出了一个新的图像分割变分模型。该模型结合BV-L^2分解和CV模型,可以实现噪声图像的同时去噪与分割。采用交替迭代算法对新模型进行求解。以人造图像和自然图像为实验对象验证了研究模型分割的有效性和鲁棒性。此外,对比实验结果显示对于强噪声污染图像,与经典的CV模型和VFCMS模型相比,研究模型在分割质量上有一定优势。 Chan-Vese(CV)model is robust to noise to some extent due to the using of global image information.But for the image corrupted by strong noise, CV model cannot get satisfactory segmentation.In this paper,we propose a variational level set model that combines CV model with variational image decomposition.The proposed model integrating BV-L^2 decomposition into CV functional can achieve image denoising and segmentation,simultaneously.An alternative and iterative algorithm is applied to numerically solve the proposed model.Experiments on some synthetic and real images demonstrate the efficiency and robustness of the proposed model.Moreover,compared with the wellknown CV model and VFCMS model,the proposed model can get better performance for the image corrupted by strong noise.
作者 唐利明 方壮 向长城 陈世强 TANG Liming1 , FANG Zhuang1,2 , XlANG Changcheng1 , CHEN Shiqiang1(1. School of Science, Hubei University for Nationalities, Enshi 445000, Hubei, P.R.China; 2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R.Chin)
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期82-90,共9页 Journal of Chongqing University
基金 国家自然科学基金资助项目(61561019) 湖北省自然科学基金资助项目(2015CFB262) 国家科技支撑计划课题资助项目(2015BAK27B03) 湖北民族学院博士启动基金资助项目(MY2015B001)~~
关键词 图像分割 Chan-Vese(CV)模型 BV-L^2分解 图像去噪 image segmentation Chan-Vese(CV) model BV-L^2decomposition image denoising
  • 相关文献

参考文献2

二级参考文献36

  • 1唐利明,何传江,申小娜.几何活动轮廓模型的多尺度扩散分割算法[J].计算机辅助设计与图形学学报,2007,19(5):661-666. 被引量:9
  • 2Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79. 被引量:1
  • 3Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 4Li C M,Kao C Y,Gore J C,et al.Minimization ofregion-scalable fitting energy for image segmentation[J].IEEE Transactions on Image Processing,2008,17(10):1940-1949. 被引量:1
  • 5Vese L A,Chan T F.A multiphase level set framework forimage segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293. 被引量:1
  • 6Wang L,Li C M,Sun Q S,et al.Active contours driven bylocal and global intensity fitting energy with application tobrain MR image segmentation[J].Computerized MedicalImaging and Graphics,2009,33(7):520-531. 被引量:1
  • 7Zhang K H,Song H H,Zhang Lei.Active contours drivenby local image fitting energy[J].Pattern Recognition,2010,43(4):1199-1206. 被引量:1
  • 8Zhang K H,Zhang L,Song H H,et al.Active contours withselective local or global segmentation:a new formulation andlevel set method[J].Image and Vision Computing,2010,28(4):668-676. 被引量:1
  • 9Wang X F,Huang D S,Xu H.An efficient local Chan-Vesemodel for image segmentation[J].Pattern Recognition,2010,43(3):603-618. 被引量:1
  • 10Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. 被引量:1

共引文献53

同被引文献35

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部