期刊文献+

A Finite Volume Unstructured Mesh Method for Fractional-in-space Allen-Cahn Equation 被引量:1

有限体积方法非结构网格方法解分数阶Allen-Cahn程(英文)
下载PDF
导出
摘要 Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains.
出处 《Chinese Quarterly Journal of Mathematics》 2017年第4期345-354,共10页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(11105040,61773153) Supported by the Foundation of Henan Educational Committee(18B110003,15A110015) Supported by the Excellent Young Scientific Talents Cultivation Foundation of Henan University(yqpy20140037) Supported by the Science and Technology Program of Henan Province(162300410061)
关键词 fractional-in-space Allen-Cahn equation finite volume METHOD matrix transfertechnique preconditioned LANCZOS METHOD fractional-in-space Allen-Cahn equation finite volume method matrix transfer technique preconditioned Lanczos method
  • 相关文献

参考文献1

二级参考文献11

  • 1GAO Guang-hua, SUN Zhi-zhong. A compact finite difference scheme for the fractional sub-diffusion equa- tions[J]. J of Computational Physics, 2011, 239: 586-595. 被引量:1
  • 2KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Netherlands: Elsevier Science and Technology, 2006. 被引量:1
  • 3GAO Guang-hua, SUN Zhi-zhong, ZHANG Ya-nan. A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions[J]. J of Computational Physics, 2012, 231: 2865-2879. 被引量:1
  • 4ESCHER J, GUIDOTTI P, HIEBER M, et al. Parabolic problems[M]. Basel: Springer Basel, 2011. 被引量:1
  • 5PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999. 被引量:1
  • 6KARATAY I, BAYRAMOGLU S R, SAHIN A. Implicit difference approximation for the time fractional heat equation with the nonlocal condition[J]. Applied Numerical Mathematics, 2011, 61: 1281-1288. 被引量:1
  • 7LIN Yu-min, XU Chuan-ju. Finite difference/spectral approximations for the 1 time-fractional diffusion equation[J]. J of ComputationM Physics, 2007, 225: 1533-1552. 被引量:1
  • 8WEI Lei-lei, HE Yin-nian, ZHANG Xin-dong, et al. Analysis of an implicit fully discrete locM discontinuous Galerkin method for the time-fractional Schrodinger equation[J]. Finite Elements in Analysis and Design, 2012. 59: 28-34. 被引量:1
  • 9AL-SHIBANI F S, MD A I ISMAIL, ABDULLAH F A. The implicit killer box method for the one dimen- sional time fractional diffusion equation[J]. J of Applied Mathematics Bioinformatics, 2012, 2 (3): 69-84. 被引量:1
  • 10CHEN Chang-ming, LIU Fa-wang, K.Burrage. Finite difference methods and a fourier analysis for the fra- ctionM reaction-subdiffusion equation[J]. Applied Mathematics and Computation, 2008, 198: 754-769. 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部