期刊文献+

On computing minimal H-eigenvalue of sign-structured tensors 被引量:5

On computing minimal H-eigenvalue of sign-structured tensors
原文传递
导出
摘要 Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a non- negative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm. Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a non- negative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第6期1289-1302,共14页 中国高等学校学术文摘·数学(英文)
基金 This work was done during the first authors' postdoctoral period in Qufu Normal University. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11601261, 11671228) and the Natural Science Foundation of Shandong Province (No. ZR2016AQ12).
关键词 Extended essentially nonnegative tensor (EEN-tensor) positive semi-definiteness H-eigenvalue sum-of-squares (SOS) polynomial Extended essentially nonnegative tensor (EEN-tensor), positive semi-definiteness, H-eigenvalue, sum-of-squares (SOS) polynomial
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献8

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部