期刊文献+

基于BP神经网络的刮板输送机负载预测的研究 被引量:5

Research on Load Forecasting of Scraper Conveyor Based on BP Neural Network
下载PDF
导出
摘要 本文针对当前刮板输送机的发展现状,详细介绍了刮板输送机的负载特性。通过对采煤过程中刮板输送机送煤量的变化情况进行分析,得出了刮板输送机电流与负载之间的联系。通过利用BP神经网络的方法,建立了负载与电流的预测模型,对输送机负载情况进行了预测,为井下刮板输送机与采煤机协同工作提供了参考依据。 In this paper, the current situation of scraper conveyor is introduced, and the load characteristics of scraper conveyor are introduced in detail. Through the analysis of the change of the amount of coal feeding in the scraper conveyor, the relationship between the current and the load of the scraper conveyor is obtained. By using the BP neural network method, the prediction model of load and current is established, and the load condition of the conveyor is forecasted, which provides a reference for the cooperation between the scraper conveyor and the coal miner.
作者 郝斌
出处 《煤矿现代化》 2018年第3期87-88,92,共3页 Coal Mine Modernization
关键词 刮板输送机 负载预测 神经网络 电流 Scraper conveyor Load forecasting Neural network Current
  • 相关文献

参考文献2

二级参考文献1

  • 1于学谦.矿山运输机械[M].徐州:中国矿业大学出版社,2004. 被引量:12

同被引文献39

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部