摘要
在压缩感知信号重构的过程中,为使投影梯度稀疏重构算法(GPSR)在保持低复杂度的同时,能有效提高重构性能,引入了自适应思想,给重构模型添加具有惩罚意义的权重系数,以寻找算法复杂度和精度之间的最佳平衡点;根据解的收敛进程不断调整权重值,以加速收敛.仿真实验表明:在相同条件下,该算法的计算效率优于传统的GPSR算法和典型的OMP算法,能在较短的运行时间内大幅度提高重构精度.
In order to improve the performance of gradient projection for sparse reconstruction(GPSR)algorithm effectively during the process of compressed sensing signal reconstruction,the weight coefficients for penalty is introduced into the reconstruction model.Its advantage is to find the best balance between the complexity and the construction precision.The weights are adaptively adjusted during every iterative step to accelerate the convergence.Simulation experiment results show that the proposed algorithm has a better performance on computational efficiency than that of the traditional GPSR algorithm and the typical OMP algorithm,enabling high precision reconstruction in less time.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2018年第2期158-163,共6页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(61373174)
中央高校基本科研业务费专项(JB150716)
关键词
压缩感知
重构算法
GPSR算法
自适应思想
compressed sensing
signal reconstruction
GPSR algorithm
adaptive ideal