期刊文献+

基于稀疏成分分析的测向技术 被引量:2

A Direction Finding Technique Based on Sparse Component Analysis
下载PDF
导出
摘要 雷达和通信信号辐射源的测向定位是电子侦察的重要任务之一。如何实现快速、高精度、低成本的信号辐射源DOA估计一直是阵列信号处理继续研究和努力的方向。传统的阵列信号处理在接收信号时消耗了大量的模数转换单元,给硬件前端设计带来了巨大压力。近年来基于稀疏成分分析和压缩感知理论的测向技术得到了快速发展,对该方向上的测向方法进行了总结和仿真分析,验证了该算法在DOA估计性能上的优势。该类算法不仅能大大简化接收机前端硬件电路,而且在测向精度和解相干信号源的问题上具有更好的效果,给新体制的电子侦查测向机提供了新的设计思路。 It is one of the important tasks for Electronic Reconnaissance ( ER) to find the direction and determine the location of radar and communication source. We have made great efforts for array signal processing to achieve fast,accurate and low-cost direc-tion-of-arrival ( DOA) of signal sources. The conventional array signal processing consumes too many Analog to Digital Conversions ( ADCs) that brings huge pressure to front hardware. The direction finding technique based on Sparse Component Analysis ( SCA) and compressive sensing theory is developed rapidly. The simulation results show that this direction finding method has advantages on DOA estimation,and it can not only simplify the front hardware of the receiver,but also achieve better result in direction finding precision and the solutions of the coherent signals. This paper summarizes and analyzes these methods by MATLAB,providing new design ideas for the new system ER direction finder.
作者 夏辉 王晓庆
出处 《无线电工程》 2014年第10期43-46,80,共5页 Radio Engineering
基金 南海公益性行业科研专项基金资助项目(2013418028)
关键词 DOA估计 压缩感知 空域稀疏 侦查测向 DOA estimation compressive sensing spatial sparseness reconnaissance and direction finding
  • 相关文献

参考文献12

二级参考文献42

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2程春悦,吕英华.存在阵列导引向量误差时的自适应波束形成算法[J].信号处理,2007,23(3):321-324. 被引量:4
  • 3Frost O L. An algorithm for linearly constrained adaptive processing[ J ]. IEEE Proc., 1972,60 (8) :926-955. 被引量:1
  • 4Schmidt R O. Multiple emitter location and signal parame- ter estimation[ J]. IEEE Trans. Antennas Propag. , 1986, 34(3) :276-280. 被引量:1
  • 5Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [ J ]. IEEE Trans. Acoust. Speech Signal Process, 1989,37 (7) :984-995. 被引量:1
  • 6Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection [ J ]. IEEETrans. ASSP, 1988,36(10) : 1553-1560. 被引量:1
  • 7Donoho D L. Compressed sensing[ J]. IEEE Trans. Inf. Theory, 2006,52(4) : 1289-1306. 被引量:1
  • 8Fuchs J J. On the application of the global matched filter to DOA estimation with uniform circular arrays[ J]. IEEE Trans. Signal Process. , 2001,49 (4) :702-709. 被引量:1
  • 9Malioutov D, Mujdat C, Willsky A. A Sparse Signal Re- construction Perspective for Source Localization with Sen- sor Arrays [ J ]. IEEE Trans. Signal Process. , 2005,53 (8) :3010-3022. 被引量:1
  • 10Gurbuz A C, McClellan J H. A compressive beamformingaethod [ J ]. IEEE ICASSP, 2008,2617-2620. 被引量:1

共引文献97

同被引文献22

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部