摘要
该文主要分析非线性中立型变延迟微分方程(NDDEs)的长时间行为,获得了非线性变延迟系统解的一致最终有界性的主要结果.基于此主要结果,得到了非线性中立型延迟微分方程的两个典型特例,常延迟微分方程和比例延迟微分方程,解一致最终有界的充分条件.文章最后给出了一些具体实例以说明这些结果的应用.
The long-time behaviour of nonlinear neutral delay differential equations (NDDEs) with variable delay is analysed. A main result guaranteeing uniform ultimate boundedness for a variable delay nonlinear system has been established. The sufficient conditions for the uniform ultimate boundedness for two typical examples of NDDEs, the constant delay differential equations and the proportional delay differential equations, are derived from the main result. Some examples are given to illustrate the applications of these results.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第1期96-109,共14页
Acta Mathematica Scientia
基金
国家自然科学基金(11371074,11771060),湖南省自然科学基金杰出青年项目(13JJ1020),湖南省教育厅研究基金(13A108)和湖南省研究生创新项目(CX20168418)
关键词
中立型延迟微分方程
变延迟
长时间稳定性
渐近行为
一致最终有界性
耗散性.
Neutral delay differential equations
Variable delay
Long-time stability
Asymptotic behaviour
Uniform ultimate boundedness
Dissipativity.