期刊文献+

基于多频率尺度模糊熵和ELM的滚动轴承剩余寿命预测 被引量:21

Prediction of Remaining Life of Rolling Bearings Based on Multi-frequency Scale Fuzzy Entropy and ELM
下载PDF
导出
摘要 针对滚动轴承剩余寿命预测问题,利用经验模态分解对滚动轴承全寿命振动信号进行分解,得到有限个IMF分量,对这些IMF分量分别进行模糊熵分析,提取出滚动轴承故障特征信息,得到多频率尺度模糊熵值。然后采用PCA进行降维,建立滚动轴承性能退化评估指标。把经PCA融合后的IMF模糊熵值输入到ELM极限学习机中,训练ELM预测模型,对滚动轴承进行短期退化趋势预测,以及剩余寿命预测,并与经PCA融合后的IMF样本熵值的预测性能进行对比,证明所提指标的预测精度较高且预测结果趋于保守,更适合用于滚动轴承的剩余寿命预测。 The remaining life of rolling bearings is predicted.First of all,empirical mode decomposition(EMD)method is applied to the decomposition of the vibration signals of the total lifespan of the bearing and several IMF components are obtained.The fuzzy entropy analysis of these IMF components is carried out to extract the fault feature information of the rolling bearing,and the fuzzy entropy of multi-frequency scale is obtained.Then,PCA is used to reduce the dimension,and the deterioration evaluation index of the rolling bearing is established.Finally,the index is input into the ELM learning machine,and the ELM prediction model is trained to predict the short term trend of the rolling bearing and the remaining life.Compared with the predicted value of the IMF sample entropy after the fusion of PCA,it is proved that the prediction accuracy of the proposed index is high and the prediction result of the remaining life of the bearing is slightly conservative.
出处 《噪声与振动控制》 CSCD 2018年第1期188-192,共5页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51505002) 安徽省高校自然科学研究重点资助项目(KJ2015A080)
关键词 振动与波 经验模态分解 模糊熵 PCA ELM 剩余寿命预测 vibration and wave empirical mode decomposition fuzzy entropy PCA ELM remaining life prediction
  • 相关文献

参考文献7

二级参考文献48

  • 1单敬福,纪友亮,柳成志.改进人工神经网络原理对储层渗透率的预测——以北部湾盆地涠西南凹陷为例[J].石油与天然气地质,2007,28(1):106-109. 被引量:15
  • 2Osman E A, Abdel-Wahhab O A, Al-Marhoun M A. Prediction of Oil PVT Properties Using Neural Networks[C]//Proc of the SPE Middle East Oil Show and Conf,2001. 被引量:1
  • 3Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Network[C] //Proc of Int'l Joint Conf on Neural Networks, 2004. 被引量:1
  • 4Huang G-B, Zhu Q-Y, Siew C-K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70:489-501. 被引量:1
  • 5Vapnik V. Statistical Learning Theory[M], 1998. 被引量:1
  • 6libSVM[ED]. [2009-04-12]. http://www. csie. ntu. edu. tw/ -cjlin/libsvm/. 被引量:1
  • 7Fan R-E, Chen P-H, Lin C-J. Working Set Selection Using the Second Order Information for Training SVM[J]. Journal of Machine Learning Research, 2005,6 : 1889-1918. 被引量:1
  • 8Li M-B, Huang CrB, Saratchandran P, et al. Fully Complex Extreme Learning Machine[J]. Neurocomputing, 2005,68: 306-314. 被引量:1
  • 9Huang G-B,Siew C-K. Extreme Learning Machine with Randomly Assigned RBF Kernels[J]. International Journal of Information Technology, 2005,11(1): 16-24. 被引量:1
  • 10Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy [ J ]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278 (6) : H2039 - H2049. 被引量:1

共引文献125

同被引文献155

引证文献21

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部