期刊文献+

基于子类划分和粒子群优化的自适应编码多类分类方法 被引量:3

Multiclass classification of adaptive error-correcting output codes based on subclass and particle swarm optimization
原文传递
导出
摘要 纠错输出编码(ECOC)可以有效地解决多类分类问题.基于数据的编码是主要的编码方法之一.对此,提出一种基于子类划分和粒子群优化(PSO)的自适应编码方法,利用混淆矩阵衡量各类别的相关性,基于规则的方法对类别进行自适应组合,根据组合方案构建类别的二类划分并最终形成编码矩阵,通过引入PSO算法寻找最优阈值,从而得到最优编码矩阵.实验结果表明,所提出的编码方法可以得到更好的分类性能. Error correcting output codes(ECOC) is an effective way to solve multiclass classification problems. Encoding based on data is one of important methods to having coding matrix. Thereforem, an adaptively encoding method based on subclass and particle swarm optimization(PSO) is proposed. Firstly, the similarity between each pair of patterns is measured by using the confusion matrix, and classes are regrouped based on rules. Then binary partitions are gotten based on pattern combination. Finally, the PSO algorithm is introduced to find the most suitable thresholds, thus obtaining a data driven coding matrix. Experimental results show that the proposed method can provide better performance.
出处 《控制与决策》 EI CSCD 北大核心 2018年第2期211-218,共8页 Control and Decision
基金 国家自然科学基金项目(61273275)
关键词 模式识别 纠错输出编码 多类分类 子类划分 粒子群优化 pattern recognition error-correcting output codes multi-class classification subclass particle swarm optimizadon
  • 相关文献

参考文献1

二级参考文献13

  • 1蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 2张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 3Windeatt T, Smith R S, Dias K. Weighted decoding ECOC for facial action unit classification[C]//Proc, of the 18th European Conference on Artificial Intelligence, 2008: 26- 30. 被引量:1
  • 4Ghani R. Combining labeled and unlabeled data for text classification with a large number of categories[C]// Proc. of the IEEE Interna- tional Conference on Data Mining, 2001: 597- 598. 被引量:1
  • 5Zhou J, Suen C. Unconstrained numeral pair recognition using enhanced error correcting output coding: a holistic approach[J]. Document Analysis and Recognition, 2005, 32(1) : 484 - 488. 被引量:1
  • 6Pujol O, Radeva P, Vitria J. Discriminate ECOC: a heuristic method for application dependent design of error correcting out- put codes[J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28 (6) : 1001 - 1007. 被引量:1
  • 7Alpaydin E, Mayoraz E. Learning error-correcting output codes from data[C]//Proc, of the 9th International Conference on Artificial Neural Networks, 1999:743- 748. 被引量:1
  • 8Utschick W, Weichselberger W. Stochastic organization of out put codes in multiclass learning problems[J]. Neural Compute. 2001, 13(5) :1065 - 1102. 被引量:1
  • 9Crammer K, Singer Y. On the learn ability and design of output codes for multielass problems[J]. Machine Learning, 2002, 47(2) 201 - 233. 被引量:1
  • 10Esealera S, David M, Pujol O, et al. Subclass problem-depend- ent design for error-correcting output codes[J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30 (6) : 1041 - 1054. 被引量:1

共引文献10

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部