期刊文献+

一种支持向量机算法设计中优化的混合加权核函数选取与样本加权方法 被引量:3

Mixed Weighting Kernel Function Construction and Sample Weighting Algorithm in SVM
下载PDF
导出
摘要 为提高支持向量机(SVM)算法的分类精度,本文基于SVM分类算法工作原理,提出一种新的样本权值设置方法,并将SVM最大分类间隔因素引入蚁群算法(ACO)中,实现了优化的混合加权核函数选取.首先,依据最大分类间隔决定SVM分类模型潜在分类能力这一原理,基于样本对最大分类间隔的不同贡献自适应地为其设置权值.然后,将SVM最大分类间隔因素引入ACO搜索算法的参数设置中,对混合加权核函数方案进行确定.本文算法从提高SVM分类模型分类确定性的角度出发,实现了训练样本权值、核函数以及其相应系数的自适应设置、选取.最终,本文方法用于一系列有针对性的笔迹验证实验,实验结果证明用本文方法学习所得SVM分类模型对后续待检测样本具有更高分类精度. To heighten the classification accuracy of SVM (Support Vector Machine) algorithm,this paper proposes a novel sample weighting algorithm based on the SVM algorithm principle.Meanwhile,an optimal mixed weighting kernel function selection by ACO (Ant colony optimization) is achieved by introducing the maximum classification interval factor into ACO.Firstly,according to the principle that the maximum classification interval will determines the potential classification ability of the learnt SVM classifier model,the instances are adaptively weighted based on their contributions to the maximum classification interval.Then,this paper innovatively introduces the maximum classification interval factor into ACO parameter setting to realize the optimal kernel functions and their corresponding coefficients search.In this paper the choices for kernel functions,their corresponding coefficients and training samples′ weighs are all decided adaptively and optimally on the basis of enhancing the designed SVM classifier model′s classification accuracy and potential.Finally,the proposed method is used in the Chinese handwriting verification and a series of targeted experiments are designed and conducted.The experiment results prove the learnt SVM classifier model possesses a higher classification accuracy for the future testing samples by the proposed method in this paper.
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第2期340-346,共7页 Journal of Chinese Computer Systems
基金 北京首批13所高校高精尖创新中心基金项目(PXM2016_014204_500072)资助
关键词 核函数 SVM ACO 分类器 kernel function SVM (Support Vector Machine) ACO (Ant colony optimization) classifier
  • 相关文献

参考文献4

二级参考文献36

  • 1Plamondon R, Lorette G. Automatic signature verification and writer identification The state of the art [J]. Pattern Recognition, 1989, 22(2): 107-131. 被引量:1
  • 2Said H E S, TAN Tieniu, Baker K D. Personal identification based on handwriting [J]. Pattern Recognition, 2000, 33(1) : 149 - 160. 被引量:1
  • 3Bulacu M, Schomaker L. Text independent writer identification and verification using textural and allographic features [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2007, 29(4) : 701 - 717. 被引量:1
  • 4LIU Chenglin, DAI Ruwei, LIU Yingjian. Extracting individual features from moments for Chinese writer identification [C] // Proc of Int Conf Document Analysis and Recognition. Montreal: IEEE Press, 1995, 1 : 438 - 441. 被引量:1
  • 5WANG Xianliang, DING Xiaoqing, LIU Hailong. Writer identification using directional element features and linear transform [C] // Proc Int Conf on Document Anaiysis and Recognition. Edinburgh: IEEE Press, 2003, 2:942-945. 被引量:1
  • 6Yoshimura M, Yoshimura I, Kim H B. A text-independent off-line writer identification method for Japanese and Korean sentences [J]. IEICE Trans Inf and Syst, 1993, E76-D(4) : 454 - 461. 被引量:1
  • 7ZHU Yong, TAN Tieniu, WANG Yunhong. Biometric personal identification based on handwriting [C] //Proc 15th Int Conf Pattern Recognition. Barcelona: IEEE Press, 2000: 797-800. 被引量:1
  • 8HE Zhenyu, YOU Xinge, TANG Yuanyan. Writer identification of Chinese handwriting documents using hidden Markov tree model [J]. Pattern Recognition, 2008, 41(4): 1295 - 1307. 被引量:1
  • 9SU Tonghua, ZHANG Tianwen, GUAN Dejun. Corpus-based HIT-MW database for offline recognition of general-purpose Chinese handwritten text [J]. Int J Doc Ana and Rec, 2007, 10(1): 27-38. 被引量:1
  • 10SU Tonghua. HIT-SW Database Homepage [EB/OL]. (2006). http ://hitswdb. googlepages.com/. 被引量:1

共引文献109

同被引文献68

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部