期刊文献+

对基于知识发现的神经元网络集成方法的研究 被引量:1

A Research on the Knowledge-based Neural Network Ensembles
下载PDF
导出
摘要 该文对应用知识发现技术训练神经元网络集成的方法进行了研究,提出了以并行操作的方式结合归纳学习所获取的知识和演绎学习所获取的知识的神经元网络集成模型KBNNE(Knowledge-basedNeuralNetworkEnsem-bles)。实验表明,通过调节所获取知识的权重因子,新模型可以有效提高网络集成的性能。 This article explores the utility of knowledge discovery in Neural Network Ensembles. A novel neural network ensemble model KBNNE(Knowledge-Based Neural Network Ensembles)integrating KDD(Knowledge Discovery in Database)techniques and neural network ensemble algorithms by parallel operations is proposed. By balancing the relative importance of knowledge learned by induction and deduction, the new model improves the quality of neural network ensembles and has been applied successfully to actual modeling problems.
作者 王泳 邢红杰
出处 《计算机科学》 CSCD 北大核心 2006年第10期189-192,共4页 Computer Science
基金 国家自然科学基金资助(60275025 60121302)。
关键词 知识发现 神经元网络集成 归纳学习 演绎学习 Knowledge discovery, Neural network ensembles, Induction,Deduction
  • 相关文献

参考文献28

  • 1Haykin S.Neural Networks:A Comprehensive Foundation(2nd edition).Prentice-Hall,New Jersey,1999 被引量:1
  • 2Duda R O,Hart P E,Stork D.Pattern Classification(2nd edition).New York:John Willy,2001 被引量:1
  • 3Fayyad U M,Shapiro G P,Smyth P,Uthurusamy R.Advances in Knowledge Discovery and Data Mining.American Association for Artificial Intelligence,Menlo Park,CA,USA,1996 被引量:1
  • 4郭萌,王珏.数据挖掘与数据库知识发现:综述[J].模式识别与人工智能,1998,11(3):292-299. 被引量:41
  • 5Fayyad U M,Shapiro G P,Smyth P.The KDD Process for Extracting Useful Knowledge from Volumes of Data.Communications of the ACM,1996,39(11):27~34 被引量:1
  • 6Fayyad U M.Data Mining and Knowledge Discovery:Making Sense Out of Data.IEEE Expert,1996,11(5):20~25 被引量:1
  • 7Mitra S,Pal S K,Mitra P.Data Mining in Soft Computing Framework:A Survey.IEEE Trans.on Neural Networks,2002,13(1):3~14 被引量:1
  • 8员巧云,程刚.近年来我国数据挖掘研究综述[J].情报学报,2005,24(2):250-256. 被引量:46
  • 9Lee M L,Hsu W.Improving data quality:eliminating dupes & I-D-ing those spurious links.IEEE Potentials,2005,24(2):35~38 被引量:1
  • 10Alimonte D D,Zibordi G.Statistical Assessment of Radiometric Measurements From Autonomous Systems.IEEE Trans.on Geoscience and Remote Sensing,2006,44(3):719~728 被引量:1

二级参考文献45

  • 1Ingo Steinwart, On the influence of the kernel on the generalization ability of support vector machines. Department of mathematics and computer science, Friedrich Schiller University(Jena): Technical Report TR-01-01, 2001 (Available as http://www. minet. uni-jena. de /Math-Net /reports/rep-com.html). 被引量:1
  • 2Shun-ichi Amari, Si Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks,1999, 12:783-789. 被引量:1
  • 3Vapnik V. The Nature of Statistical Learning Theory. New York:Verlag, 1995. 被引量:1
  • 4Scholkpf B. Support vector learning[Ph D dissertation]. Berlin University, Berlin, 1997. 被引量:1
  • 5Oja E. Subspace Methods of Pattern Recognition. Hertfordshire: Research Studies Press Ltd. ,1983. 被引量:1
  • 6Lodha S K, Franke R. Scattered data techniques for surfaces.In: Proceedings of Dagstuhl Conference on Scientific Visualization. Washington, 1999. 182-222. 被引量:1
  • 7Guan L T et al. Computer Aided Geometric Design. Beijing:CHEP & Springer, 1999. 被引量:1
  • 8Vapnik V,Chapelle O. Bounds on error expectation for support vector machines. Neural Computation, 2000, 12( 9): 2013-2036. 被引量:1
  • 9Chapella O, Vapnik V. Model selection for support vector machines. In: Solla S A, Leen T K,Muller K Reds. Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 1999. 被引量:1
  • 10Chapella O,Vapnik V. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46 (1) : 131-159. 被引量:1

共引文献140

同被引文献14

  • 1胡包钢,王泳,杨双红,曲寒冰.如何增加人工神经元网络的透明度?[J].模式识别与人工智能,2007,20(1):72-84. 被引量:11
  • 2Fayyad U M,Shapiro G P, Smyth P. The KDD Process for Ex- tracting Useful Knowledge from Volumes of Data[J]. Communi cations of the ACM, 1996,39( 11 ) :27-34. 被引量:1
  • 3Han Jia-wei, Kamber M, Pei Jian. Data Mining: Concepts and Techniques(3rd edition)[M]~. Singapore,Elsevier,2012. 被引量:1
  • 4Tan Pang-ning, Steinbach M , Kumar V. Introduction to Data Mining[M~]. Addison Wesley,2005. 被引量:1
  • 5Mitra S, Pal S K, Mitra P. Data Mining in Soft Computing Framework: A Survey [J]. IEEE Trans. on Neural Networks, 2002,13(1):3-14. 被引量:1
  • 6Lee M R, Chen T T. Revealing research themes and trends in knowledge management: From 1995 to 2010 [J]. Knowledge Based Systems, 2012,28 ( 4 ) : 47-58. 被引量:1
  • 7West M. Developing High Quality Data Models~[M]~. Singapore, Elsevier, 2011. 被引量:1
  • 8Duda R O, Hart P E, Stork D. Pattern Classification (2nd edi tion)[~M]~. New York,John Willy, 2001. 被引量:1
  • 9l.iberona D, Ruiz M, Fuenzalida D. Customer Knowledge Man- agement in the Age of Social Networks[J]. Advances in Intelli- gent Systems and Computing, 2013,172 : 353-364. 被引量:1
  • 10Pelleg D, Moore A W. X-means: Extending K-means with Effi eient Estimation of the Number of Clusters [C]~//Seventeenth International Conference on Machine l,earning. 2000:727-734. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部