期刊文献+

基于扩展有限元法计算二维应力强度因子 被引量:3

Calculation of two dimensional stress intensity factor based on extended finite element method
下载PDF
导出
摘要 基于ABAQUS有限元分析平台和UEL用户自定义单元接口,采用Matlab编制了扩展有限元的分析程序,对单边裂纹有限板条试件进行了扩展有限元模拟,并用位移外推法计算了裂纹的应力强度因子,探讨了网格密度和积分区域尺寸以及积分点个数对计算应力强度因子精度的影响。数值结果表明:细化网格可以显著提高有限元的计算精度,但由于扩展有限元本身精度较高,细化网格对提高扩展有限元计算精度的效果不明显;合理确定富集单元积分区域范围以及增加积分点个数都可以提高计算精度。 An extended finite element analysis program(XFEM) is compiled by Matlab which based on finite element analysis platform ABAQUS and user-defined unit UEL. The extended finite element simulation of a striped specimen with single edge crack was carried out,and the stress intensity factor of crack on the specimen was calculated by displacement extrapolation method. The effects of mesh density,integral region size and the number of integral points on the stress intensity factor were discussed. Numerical results show that mesh refinement of classical finite element method can significantly improve the accuracy of the stress intensity factor. Due to high accuracy of extended finite element method,melioration of mesh refinement is not obvious for XFEM method. Determiningintegral region size and number of integration points reasonably can improve the calculation accuracy.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2018年第1期365-370,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51465002 11262001) 广西重点实验室系统性研究项目(2016ZDX07) 广西自然科学基金资助项目(2012GXNSFBAO53145) 广西自然科学基金资助项目(2014GXNSFAA118341)
关键词 应力强度因子 扩展有限元法 位移外推法 裂尖位移场 网格密度 stress intensity factor extended finite element method displacement extrapolation method crack tip displacement field mesh density
  • 相关文献

参考文献7

二级参考文献36

  • 1陈传尧 黄大兴.疲劳断裂基础[M].武汉:华中理工大学出版社,1989.243. 被引量:2
  • 2BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Method in Engineering, 1999,45 : 601-620. 被引量:1
  • 3MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Method in Engineering, 1999,46 : 131-150. 被引量:1
  • 4DOLBOW J, MOES N, BELYTSCHKO T. An extended finite element method for modeling crack growth with frictional contact[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190: 6825-6846. 被引量:1
  • 5MOES N,BELYTSCHKO T. Extended finite element method for cohesive crack growth [J]. Engineering Fracture Mechanics, 2002,69 : 813-833. 被引量:1
  • 6CHOPP D L,SUKUMAR N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method[J]. International Journal of Engineering Science, 2003, 41:845-869. 被引量:1
  • 7BORDAS Stephane, Moran Brian. Enriched finite elements and level sets for damage tolerance assessment of complex structures[J]. Engineering Fracture Mechanics, 2006,73: 1176-1201 被引量:1
  • 8SUKUMAR N, Prevost J-H. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ: Computer implementation[J]. International Journal of Solids and Structures, 2003, 40: 7513- 7537. 被引量:1
  • 9XIAO Q Z, KARIHALOO B L. Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003,26:719-729. 被引量:1
  • 10LIU X Y,XIAO Q Z,KARIHALOO B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials[J]. International Journal for Numerical Method in Engineering, 2004, 59: 1103-1118. 被引量:1

共引文献64

同被引文献30

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部