期刊文献+

小孔对裂尖影响的扩展有限元分析 被引量:1

Influence analysis of micro hole on crack tip based on XFEM
下载PDF
导出
摘要 在扩展有限元的框架下,引入一个内聚的裂尖加强函数,相比传统的裂尖加强函数而言,该内聚加强函数具有相同精度但自由度很少的优势。采用改进的扩展有限元方法对裂尖附近小孔的不同布置方案下裂纹的扩展过程进行了追踪模拟,基于相互作用积分的方法计算了裂尖移动过程中的应力强度因子序列,并提出一个裂尖汇合到小孔后的应力强度因子计算策略。通过扩展路径和应力强度因子的对比分析,发现小孔对裂纹的扩展具有一定的诱导性,且裂纹如果汇合到小孔,则应力强度因子会突然变小,形成止裂的效果,但如果不汇合,则止裂效果不明显,甚至加剧扩展。 Under the extended finite element framework,a cohesive tip enrichment function was introduced which was of merits of same accuracy but less degree of freedom than that of traditional XFEM.For different layout schemes of micro holes near the crack tip,the crack extension processes had been tracked by the modified extended finite element method.And the stress intensity factor series when crack tip moving were calculated based on interaction integral method,and a calculated strategy of stress intensity was proposed when crack tip joined up to micro hole.Through the comparative analysis of their extension paths and stress intensity factors,we found that the micro hole was of certain inductive effect to crack extension,that the stress intensity factor decreases suddenly,forming arrest effect,when the crack joined up to micro hole,and while the crack arrest was not obvious or even intensifies extension when crack does not joined up to micro hole.
作者 李爽 夏晓舟
出处 《能源与环保》 2017年第11期228-233,237,共7页 CHINA ENERGY AND ENVIRONMENTAL PROTECTION
关键词 扩展有限元 小孔 止裂 应力强度因子 互作用积分 XFEM micro hole crack arrest stress intensity factor interaction integral method
  • 相关文献

参考文献8

二级参考文献54

  • 1曾勇,向中富,于福,姜学良,沈新慧,李贤仰.大跨度悬索桥钢加劲梁典型病害及维修策略[J].重庆交通大学学报(自然科学版),2012,31(z1):700-703. 被引量:19
  • 2夏晓舟,章青,李国华,徐道远,刘光焰.模拟不连续介质的非连续有限元法[J].河海大学学报(自然科学版),2005,33(6):682-687. 被引量:6
  • 3徐芝仑.弹性力学(上册)[M].北京:高等教育出版社,1988.177-179. 被引量:1
  • 4王中光.材料的疲劳[M].国防工业出版社,1999. 被引量:2
  • 5切列帕诺夫 黄克智 译.脆性断裂力学[M].北京:科学出版社,1990.. 被引量:7
  • 6王泳嘉 邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991.. 被引量:12
  • 7石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.. 被引量:144
  • 8卓家寿 章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.1-262. 被引量:4
  • 9BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45:601-620. 被引量:1
  • 10BELYTSCHKO T,MOES N,USUI S,et al.Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering,2001,50:993-1013. 被引量:1

共引文献65

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部