期刊文献+

代谢工程改造枯草芽孢杆菌发酵生产乙偶姻 被引量:4

Metabolic Engineering of Bacillus subtilis for the Fermentative Production of Acetoin
原文传递
导出
摘要 乙偶姻是枯草芽孢杆菌的主要代谢产物,它作为一种食用香精,广泛应用于食品、烟草、化妆品、清洁剂、酒类等行业。本研究首先在不产芽孢的枯草芽孢杆菌(BSD1,阻断了芽孢的合成途径)中敲除了2,3-丁二醇脱氢酶(BDH)的编码基因bdh A、乳酸脱氢酶(LDH)的编码基因ldh和乙酸激酶的编码基因(ACK)ack A,随后克隆了来自菌株B.subtilis168的α-乙酰乳酸合成酶(ALS)和α-乙酰乳酸脱羧酶(ALDC)基因als S和als D,并将其在上述敲除菌中过量表达,结果表明阻断副产物合成途径和加强乙偶姻合成途径关键酶的表达,会显著提高乙偶姻的产量,最终乙偶姻产量达到38.08 g/L,产率为0.45 g·L^(-1)·h^(-1),产率提高了约87.5%。 Acetoin,a major extracellular catabolic product of Bacillus subtilis,has been extensively applied in varied fields such as food,alcohol,detergent,tobacco and cosmetic industries,and so on.In this study we inactivated 2,3-butanediol dehydrogenase(BDH),lactate dehydrogenase(LDH)and acetate kinase(ACK)in sporulation-deficient B.subtilis strain(BSD1,in which spore synthetic pathway was blocked)firstly,then cloned alsS and alsD from the enzymesα-acetolactate synthetase(ALS) and α-acetolactate decearboxylase(ALDC),both encoded by alsSD operon,which were over-expressed in the recombinant strain.The results illustrated that it was an effective way to enhance acetion yield by eliminating byproducts and overexpressing key enzymes of acetoin biosynthetic pathway.Finally,by shake flask fermentation,the recombinant B.subtilis produced 38.08 g/L acetoin,with a productivity of 0.45 g·L-1·h-1,which increased by 87.5% compared to control.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2017年第12期5159-5166,共8页 Genomics and Applied Biology
基金 国家自然科学基金(31500065 31400082) 国家高技术研究发展计划(863计划)(2015AA021004) 江苏省青年自然科学基金(BK20150142) 中国博士后科学基金资助项目(2015M570407 2016T90421) 江苏高校优势学科建设工程资助项目共同资助
关键词 乙偶姻 枯草芽孢杆菌 2 3-丁二醇脱氢酶 乳酸脱氢酶 α-乙酰乳酸合成酶 Acetoin Bacillus subtilis 2,3-butanediol dehydrogenase Lactate dehydrogenase α-acetolactate synthetase
  • 相关文献

参考文献4

二级参考文献32

  • 1杨志建,蔡谨,孙健,袁中一.粪产碱杆菌青霉素G酰化酶在大肠杆菌中组成型表达及分离纯化[J].生物工程学报,2004,20(5):736-740. 被引量:11
  • 2Schloss P.D.,and Handelsman J.,2005,Metagenomics for studying unculturable microorganisms:Cutting the Gordian knot,Genome Biol.,6(8):229. 被引量:1
  • 3Streit W.R.,and Schmitz R.A.,2004,Metagenomics-tbe key to the uncultured microbes,Current Opinion in Microbiology,7(5):492-498. 被引量:1
  • 4Tyson G.W.,Chapman J.,Hugenholtz P.,Allen E.E.,Ram R.J.,Richardson P.M.,Solovyev W.,Rubin E.M.,Rokhsar D.S.,and Banfield J.F.,2004,Community structure and metabolism through reconstruction of microbial genomes from the environment,Nature,428(6978):37-43. 被引量:1
  • 5Venter J.C.,Remingtom K.,Heidelberg J.F.,Halpern A.L.,Rusch D.,Eisen J.A.,Wu D.,Paulsen I.,Nelson K.E.,Nelson W.,Fouts D.E.,Levy S.,K nap A.H.,Lomas M.W.,Nealson K.,White O.,Peterson J.,Hoffman J.,Parsons R.,Baden-Tillson H.,Pfannkoch C.,Rogers Y.H.,and Smith H.O.,2004,Environmental genome shotgun sequencing of the Sargasso Sea,Science,304(5667):66-74. 被引量:1
  • 6Weng L.,Rubin E.M.,and Bristow J.,2006,Application of sequence-based methods in human microbial ecology,Genome Res.,16(3):316-322. 被引量:1
  • 7Wilhelm L.J.,Tripp H.J.,Givan S.A.,Smith D.P.,and Giovannoni S.J.,2007,Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data,Biol.Direct.,2:27. 被引量:1
  • 8Alper H.,Fischer C.,Nevoigt E.,and Stephanopoulos G.,2005,Tuning genetic control through promoter engineering,Proc.Natl.Acad.Sci.,USA,102(36):12678-12683. 被引量:1
  • 9Cottrell M.T.,Moore J.A.,and Kirchman D.L.,1999,Chitinases from uncultured marine microorganisms,Appl.Environ.Microbiol.,65(6):2553-2557. 被引量:1
  • 10Du L.Q.,Pang H.,Hu Y.Y.,Wei Y.T.,and Huang R.B.,2010,Expression and characterization in E.coli of a neural invertase from a metagenomic library,World Journal of Microbiology and Biotechnology,26(3):419-428. 被引量:1

共引文献33

同被引文献34

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部