摘要
在Dirichlet边界条件下,利用H9lder不等式建立了二维半线性分数阶差分系统的Lyapunov型不等式,并将所得结果推广到了m维半线性分数阶差分系统上.进一步,应用所得的Lyapunov型不等式,获得了有关广义谱第一特征值的下界.
Two dimensional quasi-linear fractional order difference systems are studied under the Dirichlet boundary conditions.By H9 lder inequality,we establish Lyapunov type inequalities for two-dimensional quasilinear fractional order difference systems and the results are generalized to mdimensional quasi-linear fractional difference systems.Applying these results,we also obtain some lower bounds for the first eigenvalue in the generalized spectra.
出处
《延边大学学报(自然科学版)》
CAS
2017年第4期283-290,共8页
Journal of Yanbian University(Natural Science Edition)
基金
国家自然科学基金资助项目(11161049)