期刊文献+

基于特征值对数分布的频谱感知算法 被引量:3

Spectrum sensing algorithm based on the logarithmic distribution of eigenvalue
下载PDF
导出
摘要 利用样本协方差矩阵几何平均特征值的对数分布特性,提出了一种新的频谱感知算法。该算法基于样本协方差矩阵最大最小特征值之差与几何平均特征值的比值,通过比较该比值与门限的大小来判断主用户是否占用分配频谱,不需要知道主用户信号和噪声的先验信息,得到了十分简单的判决门限表达闭式。仿真结果表明,在低信噪比、低协作用户数以及低样本点数的条件下,所提算法能获得更优的感知性能;并且所提算法的感知性能较为稳定,受样本中极端值和虚警概率的影响均较小。 A new sensing algorithm based on the ratio of the difference of maximum-minimum eigenvalues to geometric mean eigenvalue of the sampled covariance matrix is proposed. The algorithm uses the logarithmic distribution characteristics of geometric mean eigenvalue, through comparing the ratio and threshold value to determine whether the primary user occupies the distribution spectrum, and the prior knowledge of the primary signal and noise are not needed, but a simple closed-form expression of thresh-old is obtained. The simulation results show that the proposed algorithm can get better perceived performance under the conditions of low signal to noise ratio, few collaborative users and few samples. On the other hand, it has steady sensing performance, it will be less affected by either the extreme values or the false-alarm probability.
出处 《电子技术应用》 2018年第1期79-83,共5页 Application of Electronic Technique
关键词 频谱感知 样本协方差矩阵 几何平均特征值 感知性能 spectrum sensing sample covariance matrix geometric mean eigenvalue perceived performance
  • 相关文献

参考文献7

二级参考文献79

  • 1Akyildiz I F, Lee Won-Yeol, and Vuran M C, et al.. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey [J]. Computer Networks, 2006, 50(13): 2127-2159. 被引量:1
  • 2Zeng Yong-hong, Koh Choo Leng, and Liang Ying-chang. Maximum eigenvalue detection theory and application [C]. IEEE International Conference on Communications, Beijing, May 19-23, 2008: 4160-4164. 被引量:1
  • 3Unnikrishnan J and Veeravalli V V. Cooperative sensing for primary detection in cognitive radio [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 18-27. 被引量:1
  • 4Zhang Wei, Mallik R K, and Ben Letaief K. Cooperative spectrum sensing optimization in cognitive radio networks [J] IEEE International Conference on Communications, Beijing, May 19-23, 2008: 3411-3415. 被引量:1
  • 5Ma Jun, Zhao Guo-dong, and Li Ye. Soft combination and detection for cooperative spectrum sensing in cognitive radio networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(11): 4502-4507. 被引量:1
  • 6Tulino A M and Verdu S. Random Matrix Theory and Wireless Communications [M]. Hanover, USA: Now Publisher Inc., 2004: 3-73. 被引量:1
  • 7Johnstone I M. On the distribution of the largest eigenvalue in principle components analysis [J]. The Annals of statistics, 2001, 29(2): 295-327. 被引量:1
  • 8Johansson K. Shape fluctuations and random matrices [J]. Communications in Mathematical Physics, 2000, 209(2): 437-476. 被引量:1
  • 9Tracy C A and Widom H. On orthogonal and symplectic matrix ensembles [J]. Communications in Mathematical Physics, 1996, 177(3): 727-754. 被引量:1
  • 10Baik J, Arous G B, and Peche S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J]. The Annals of Probability, 2005, 33(5): 1643-1697. 被引量:1

共引文献57

同被引文献21

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部