期刊文献+

基于特征值检测的多天线盲频谱感知算法的研究(英文) 被引量:3

Study of Eigenvalues Detection Based Multiantenna Blind Spectrum Sensing Algorithm
下载PDF
导出
摘要 在多天线感知场景中噪声不确定和信号相关现象可能同时存在,经典的基于能量检测(ED)感知性能将急剧恶化。利用多天线接收信号存在的相关特性,提出一种基于取样协方差矩阵(SCM)特征值的盲频谱感知方法。新方法无需噪声方差、主信号和无线信道的信息参与感知过程。与经典的能量检测方法相比,由于无需噪声方差参与感知节点的判决过程,新方法的感知性能对噪声不确定性具有良好的鲁棒性。利用多元统计理论和随机矩阵理论(RMT)获得了相应的理论判决门限。仿真结果表明新算法比基于ED的感知算法具有更好的误警性能和更可靠的检测性能。 In the multiantenna sensing scenarios, the sensing performance of the classical ED method can be degraded drastically because both the noise uncertainty and the correlation between the signal samples may be present simultaneously. Using the correlation characteristics of the multiple antenna received signal, a blind algorithm based on all the eigenvalues of the sample covariance matrix (SCM) is proposed. The new method can execute spectrum sensing without information about the noise variance, the primary signal and the wireless channel. Compared with the ED method, the sensing performance of the proposed method is robust to noise uncertainty because it does not need noise variance to help the sensing node to make a right decision. The multivariate statistical theory and the random matrix theory (RMT) are used to obtain the theoretical decision threshold. Simulation results show that the proposed algorithm has better false alarm performance and more reliable detection performance than the ED method when there exists noise uncertainty.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第7期1549-1554,共6页 Journal of System Simulation
基金 The National Natural Science Foundation of China(Grant No.61102089) the Scientific Research Fund of Hunan Provincial Education Department(Grant No.11C1058) the New Courses Project of Jishou University(Grant No.2011KCB03)
关键词 盲频谱感知算法 噪声不确定性 盲特征值检测 能量检测 取样协方差矩阵 多元统计理论 随机矩阵理论 blind spectrum sensing algorithm noise uncertainty blind eigenvalues detection (BESD) energy detection (ED) sample covariance matrix (SCM) multivariate statistical theory random matrix theory (RMT)
  • 相关文献

参考文献1

二级参考文献10

  • 1FCC. Spectrum policy task force report [R]//Tech, Rep 02-155, 2002. Washington DC, USA: FCC, 2002: 7-14. 被引量:1
  • 2Mitola J. Cognitive radio: Making software radios more personal [J]. IEEE Personal Communication (S 1070-9916), 1999, 6(4): 13-18. 被引量:1
  • 3S Haykin. Cognitive Radio: Brain-Empowered Wireless Communications [J]. IEEE JSAC (S0733-8716), 2005, 23(2): 201-220. 被引量:1
  • 4Cabric D, Mishra S M, Brodersen R W. Implementation Issues in Spectrum Sensing for Cognitive Radios [C]//38th Asilomar Conference on Signals, Systems and Computers, Asilomar California, USA. USA: IEEE, 2004: 772-776. 被引量:1
  • 5Tang H. Some Physical Layer Issues of Wide-Band Cognitive Radio System [C]// IEEE DySPAN, Baltimore, Maryland, USA. USA: IEEE, 2005: 151-159. 被引量:1
  • 6Cabric D, Brodersen R W. Physical Layer Design Issues Unique to Cognitive Radio Systems [C]// IEEE Personal In-door and Mobile Radio Communications (PIMRC), Berlin, Germany. USA: IEEE, 2005: 759-763. 被引量:1
  • 7Y Hur, J Park, W Won. A Wideband Analog Multi-Resolution Spectrum Sensing (MRSS) Technique for Cognitive Radio (CR) Systems [C]//2006 IEEE International Symposium on Circuits and System, Kos Island, Greece. USA: IEEE, 2006: 4090-4093. 被引量:1
  • 8Park J, Hur Y, Song T J, Kim K. Implementation Issues of A Wideband Multi-Resolution Spectrum Sensing (MRSS) Technique for Cognitive Radio (CR) Systems [C]// 2006 Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece. USA: IEEE, 2006: 1-5. 被引量:1
  • 9AlbertBoggess RrancisJ.Narcowich.芮国胜 康健等译.小波与傅立叶分析基础[M].北京:电子工业出版社,2004.. 被引量:8
  • 10张鸿,陈贵灿,陈亮.多带OFDM超宽带射频接收机的系统建模与仿真[J].系统仿真学报,2009,21(9):2473-2477. 被引量:1

共引文献2

同被引文献17

  • 1徐家品,杨智.基于随机矩阵特征值比的频谱感知改进算法[J].电波科学学报,2015,30(2):282-288. 被引量:11
  • 2SUN Hong-jian, WANG Cheng-xiang, CHEN Yun-fei. Wideband spectrum sensing for cognitive radio: a survey [ J ]. I EEE Wireless Communications, 20131 20(2): 74-81. 被引量:1
  • 3KHAN F, NAKAGAWA K. Comparative study of spectrum sensing techniques in cognitive radio networks [ C]//Proc of World Congress on Computer and Information Technology. 2013:1-8. 被引量:1
  • 4ZENG Yong-hong, LIANG Ying-chang. Maximum-minimum eigenva- lue detection for cognitive radio [ C ]//Proc of the 18 th IEEE Interna- tional Symposium on Personal, Indoor and Mobile Radio Communica- tions. 2007 : 1-5. 被引量:1
  • 5ZENG Yong-hong, LIANG Ying-chang. Eigenvalue-based spectrum sensing algorithms for cognitive radio [ J]. IEEE Trans on Commu- nications, 2009, 57 (6) : 1784-1793. 被引量:1
  • 6SHEN Lei, WANG Hai-quan, ZHANG Wei, et al. Multiple antenna assisted blind spectrum sensing in cognitive radio channels [ J ]. IEEE Communications Letters, 2012, 16( 1 ) : 92-94. 被引量:1
  • 7TULINO A M, VERDU S. Random matrix theory and wireless com- munications [ M ]. Hanover: Now Publisher Inc. , 2004. 被引量:1
  • 8JOHNSTONE I M. On the distribution of the largest eigenvalue in principle components analysis [ J ]. The Annals of Statistics, 2001, 29(2) :295-327. 被引量:1
  • 9JOHANSSON K. Shape fluctuations and random matrices[J]. Com- munications in Mathematical Physics, 2000, 209: 437-476. 被引量:1
  • 10TRACY C A, WIDOM H. On orthogonal and symplectic matrix en- sembles [J]. Communications in Mathematical Physics, 1996, 177:72?-?54. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部