期刊文献+

无人飞行器姿态稳定性优化控制仿真研究 被引量:2

Simulation Study on Attitude Stability Optimization Control of Unmanned Aerial Vehicles
下载PDF
导出
摘要 针对旋翼飞行器在使用捷联惯性导航时的姿态漂移以及不同环境中飞行器稳定性差等问题,常用的姿态解算方法很难实现机体姿态的准确解算。因此提出一种有效的数据融合方案,对AHRS中加速度计、陀螺仪和磁力计输出的数据进行滤波融合。AHRS系统采用了三轴加速度计、三轴陀螺仪与三轴磁力计为一体的高性能惯性测量单元ADIS16405,用四元数的方法来描述飞行器运动的姿态。为了减轻AHRS的负担提高系统实时性和准确性,数据融合采用运算量较小的最速下降法和改进型二阶互补滤波相结合的方法。实验结果表明,上述系统较好地解决了振动干扰与姿态优化问题,实现了长时间输出稳定的姿态数据。 In order to solve the problem of the attitude drift of the rotorcraft using strapdown inertial navigation and the poor stability of the aircraft in different environments, it is difficult to achieve accurate solution of aircraft attitude. Therefore, an effective data fusion scheme is proposed to filter and integrate the output data of accelerometer, gyroscope and magnetometer in AHRS. The AHRS system uses ADI's three - axis accelerometer, three - axis gyro- scope and three - axis magnetometer in one high - performance inertial measurement unit ADIS16405. Quaternion method is used to describe the posture of the aircraft movement. In order to reduce the burden of AHRS and improve the system's real - time and accuracy, a combination of steepest descent method and improved second - order comple- mentary filtering is for data fusion. Experimental resuhs show that the system can solve the noise problem and posture optimal estimation, and achieve the output of attitude data stably for a long time.
出处 《计算机仿真》 北大核心 2017年第12期49-54,共6页 Computer Simulation
关键词 旋翼飞行器 惯性测量单元 最速下降 改进型二阶互补滤波器 Rotary wing aircraft inertial measurement unit steepest descent Modified Second Order Complementary Filter
  • 相关文献

参考文献7

二级参考文献33

  • 1黄旭,王常虹,伊国兴,王玉峰.利用磁强计及微机械加速度计和陀螺的姿态估计扩展卡尔曼滤波器[J].中国惯性技术学报,2005,13(2):27-30. 被引量:32
  • 2Rios J A, White E. Fusion filter algorithm enhancements for a MEMS GPS/IMU[A]. ION Meeting Proceedings[C], San Diego,California, January 2002. 被引量:1
  • 3Gebre-Egziabher D, Hayward R C, Powell J D. A low cost GPS/inertial attitude heading reference system[A]. Proceedings of PLANS '98[C], Rancho Mirage, C A, April 1998. 被引量:1
  • 4Foxlin E. Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter[A]. Proceedings of VRAIS'96,IEEE[C], 1996: 185-194. 被引量:1
  • 5Marins J L, Yun X, Bachmann E R, et al. An extended Kalman filter for quatemion-based orientation estimation using MARG sensors[A]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Maui, Hawaii,USA, Oct. 2001. 被引量:1
  • 6Vaganay J, Aldon M J, Fourinier A. Mobile robot attitude estimation by fusion of inertial data[A]. Proceedings of the International Conference on Robotics and Automation[C], 1993. 被引量:1
  • 7Miller R B. A new strapdown attitude algorithm[J]. Journal of Guidance, 1983.6(4): 289-291. 被引量:1
  • 8Azor R Bar-Itzhack I Y. Deutschmann J K, et al. Angular-rate estimation using delayed quatemion measurements[J]. Journal of Guidance, Control and Dynamics, 2001, 24(3): 436-443. 被引量:1
  • 9Stephen P Tseng,et al.Motion and Attitude Estimation Using Inertial Measurements with Complementary Filter[C].Proceedings of 2011 8th Asian Control Conference (ASCC),Kaohsiung,Taiwan,May 15-18,2011. 被引量:1
  • 10徐玉.微小型无人直升机飞控平台与姿态融合算法研究[D].浙江大学,2011. 被引量:1

共引文献88

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部