期刊文献+

基于深度学习的软件定义网络应用策略冲突检测方法 被引量:11

Policy conflict detection in software defined network by using deep learning
下载PDF
导出
摘要 在基于Open Flow的软件定义网络(SDN)中,应用被部署时,相应的流表策略将被下发到Open Flow交换机中,不同应用的流表项之间如果产生冲突,将会影响交换机的实际转发行为,进而扰乱特定应用的正确部署以及SDN的安全。随着SDN规模的扩大以及需要部署应用的数量的剧增,交换机中的流表数量呈现爆炸式增长。此时若采用传统的流表冲突检测算法,交换机将会耗费大量的系统计算时间。结合深度学习,首次提出了一种适合SDN中超大规模应用部署的智能流表冲突检测方法。实验结果表明,第一级深度学习模型的AUC达到97.04%,第二级模型的AUC达到99.97%,同时冲突检测时间与流表规模呈现线性增长关系。 In Open Flow-based SDN(software defined network), applications can be deployed through dispatching the flow polices to the switches by the application orchestrator or controller. Policy conflict between multiple applications will affect the actual forwarding behavior and the security of the SDN. With the expansion of network scale of SDN and the increasement of application number, the number of flow entries will increase explosively. In this case, traditional algorithms of conflict detection will consume huge system resources in computing. An intelligent conflict detection approach based on deep learning was proposed which proved to be efficient in flow entries' conflict detection. The experimental results show that the AUC(area under the curve) of the first level deep learning model can reach 97.04%, and the AUC of the second level model can reach 99.97%. Meanwhile, the time of conflict detection and the scale of the flow table have a linear growth relationship.
出处 《电信科学》 北大核心 2017年第11期27-36,共10页 Telecommunications Science
基金 国家高技术研究发展计划("863"计划)基金资助项目(No.2015AA011901) 国家自然科学基金资助项目(No.61402408 No.61379120) 浙江省自然科学基金资助项目(No.LY18F010006) 浙江省重点研发计划基金资助项目(No.2017C03058)~~
关键词 流表冲突检测 深度学习 异常检测 软件定义网络 OPEN FLOW policy conflict detection, deep learning, anomaly detection, SDN, OpenFlow
  • 相关文献

参考文献3

二级参考文献21

  • 1A timeline of the history of the World Wide Web.http://webdirections.org/history/#0,2014. 被引量:1
  • 2Google.Company overview:our history in depth.https://www.google.com/about/company/history/,2014. 被引量:1
  • 3WordStream.A history of search engines-aninfographic.http://www.wordstream.com/articles/internet-search-engines-history,2014. 被引量:1
  • 4Zuckerberg M.Our first 100 million.http://www.facebook.com/notes/facebook/our-first-100-million/28111272130,2014. 被引量:1
  • 5Helft M.Netflix to deliver movies to the PC.The New York Times,January 16,2007. 被引量:1
  • 6Team T.How big can netflix's US streaming business get.Forbes,March 7,2013. 被引量:1
  • 7Sandvine.Global Internet Phenomena Report:2H 2013,2013. 被引量:1
  • 8Robinson D C,Jutras Y,Craciun V.Subjective video quality assessment of HTTP adaptive streaming technologies.Bell Labs Technical Journal,2012,16(4):5-23. 被引量:1
  • 93GPP TS 23.251.Technical Specification Group Services and System Aspects;Network Sharing;Architecture and Functional Description. 被引量:1
  • 103GPP TS 23.402.Technical Specification Group Services and System Aspects;Architecture Enhancements for Non-3GPP Accesses. 被引量:1

共引文献98

同被引文献91

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部