摘要
在基于Open Flow的软件定义网络(SDN)中,应用被部署时,相应的流表策略将被下发到Open Flow交换机中,不同应用的流表项之间如果产生冲突,将会影响交换机的实际转发行为,进而扰乱特定应用的正确部署以及SDN的安全。随着SDN规模的扩大以及需要部署应用的数量的剧增,交换机中的流表数量呈现爆炸式增长。此时若采用传统的流表冲突检测算法,交换机将会耗费大量的系统计算时间。结合深度学习,首次提出了一种适合SDN中超大规模应用部署的智能流表冲突检测方法。实验结果表明,第一级深度学习模型的AUC达到97.04%,第二级模型的AUC达到99.97%,同时冲突检测时间与流表规模呈现线性增长关系。
In Open Flow-based SDN(software defined network), applications can be deployed through dispatching the flow polices to the switches by the application orchestrator or controller. Policy conflict between multiple applications will affect the actual forwarding behavior and the security of the SDN. With the expansion of network scale of SDN and the increasement of application number, the number of flow entries will increase explosively. In this case, traditional algorithms of conflict detection will consume huge system resources in computing. An intelligent conflict detection approach based on deep learning was proposed which proved to be efficient in flow entries' conflict detection. The experimental results show that the AUC(area under the curve) of the first level deep learning model can reach 97.04%, and the AUC of the second level model can reach 99.97%. Meanwhile, the time of conflict detection and the scale of the flow table have a linear growth relationship.
出处
《电信科学》
北大核心
2017年第11期27-36,共10页
Telecommunications Science
基金
国家高技术研究发展计划("863"计划)基金资助项目(No.2015AA011901)
国家自然科学基金资助项目(No.61402408
No.61379120)
浙江省自然科学基金资助项目(No.LY18F010006)
浙江省重点研发计划基金资助项目(No.2017C03058)~~