期刊文献+

航空薄壁件原位检测与补偿加工方法研究 被引量:4

The Research on On-site Inspection and Compensation Machining Method for Aviation Thin-walled Parts
下载PDF
导出
摘要 航空结构件、航空叶片等薄壁零件是航空制造的关键零件,具有若刚性、材料难加工、工艺优化不足等特点,其加工精度难以控制。针对航空薄壁零件的在机测量与误差补偿方法展开研究,针对规则航空薄壁零件提出均值误差补偿方法,并在此方法的基础上延伸为针对自由曲面的分段误差补偿方法,最后对航空叶片进行了数控加工、原位检测及补偿加工实验,实验结果表明,补偿前后误差区间从0.15 mm^0.35 mm缩小到了-0.04 mm^0.06 mm,验证了分段误差补偿方法在加工几何偏差控制上的效果。 Thin-wall parts,such as aviation structures and blades,are key parts of aviation manufacturing,with weak rigidity,difficult machining,complex shape and other technical features. The machining accuracy is very difficult to control for thin-wall parts. This article researched on the on-site inspection and compensation machining method for aviation thin-walled parts,and purposed a mean error compensation method of rule characteristics of thin-walled. Based on this method,segmented compensation method for fine machining of free-form surface characteristics of thin-walled is furtherly purposed. Finally,the experiment of on-site inspection and compensation machining of an aviation blade is executed. After compensation machining,the machining error burst is reduce from 0.15 mm - 0.35 mm to-0.04 mm - 0.06 mm. The experiment verified that segmented compensation method is effective to reduce the machining error of thin-wall parts.
出处 《装备制造技术》 2017年第10期56-63,共8页 Equipment Manufacturing Technology
基金 国家自然科学基金资助项目(91648111 51635007) 国家973研究计划(2015CB057304) 武汉市应用基础研究计划(2017010201010139)
关键词 航空 薄壁零件 在机测量 补偿加工 aviation thin-walled parts in machine measurement compensation machining
  • 相关文献

参考文献8

  • 1金超..基于工况的数控加工热误差与切削振动预测方法研究[D].华中科技大学,2011:
  • 2谭刚..球头铣削切削力建模与加工表面形貌仿真研究[D].西北工业大学,2007:
  • 3王婧超..航空发动机三维单晶涡轮叶片的多学科设计优化[D].西北工业大学,2007:
  • 4李忠群..复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究[D].北京航空航天大学,2008:
  • 5李志强..曲面的宽行数控加工理论研究及其在大型抛物面天线加工中的应用[D].北京航空航天大学,2004:
  • 6陈蔚芳,陈华,楼佩煌,郑会龙.薄壁件加工变形控制快速仿真平台开发[J].计算机集成制造系统,2009,15(2):321-327. 被引量:12
  • 7李启东..叶片大规模点云处理与无干涉检测规划[D].华中科技大学,2014:
  • 8王立成..复杂曲面原位检测方法与实验研究[D].华中科技大学,2012:

二级参考文献15

  • 1周孝伦,张卫红,秦国华,张二亮.基于遗传算法的夹具布局和夹紧力同步优化[J].机械科学与技术,2005,24(3):339-342. 被引量:33
  • 2康永刚,王仲奇,吴建军,姜澄宇.基于实际切深的薄壁件加工变形误差的预测[J].西北工业大学学报,2007,25(2):251-256. 被引量:6
  • 3KULANKARA K, SATYANARAYANA S, MELKOTE S N. Iterative fixture layout and clamping force optimization u sing the genetic algorithm[J]. Journal of Manufacturing Science and Engineering, 2002,124 ( 1 ) : 119-125. 被引量:1
  • 4CHEN Weifang, NI Lijun, XUE Jianbin. Deformation control through fixture layout design and clamping force optimization [J].International Journal of Advanced Manufacturing Tech nology, 2008,38(9/10) 1860-867. 被引量:1
  • 5RATCHEV S, GOVENDER E, NIKOV S, et al, Force and deflection modelling in milling of low rigidity complex parts[J].Journal of Materials Processing Technology, 2003,143/144:796-801. 被引量:1
  • 6RATCHEV S, LIU S, HUANG W, et al. Milling error pre diction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools & Manufacture, 2004, 44(15) :1629-1641. 被引量:1
  • 7BOUZID W. Cutting parameter optimization to minimize production time in high speed turning[J].Journal of Materials Processing Technology, 2005, 161(3) :388-395. 被引量:1
  • 8FRANCI C, UROZ Z. Approach to optimization of cutting conditions by using artificial neural networks[J]. Journal of Materials Processing Technology, 2006, 173 (3) : 281-290. 被引量:1
  • 9SARDINAS R Q, SANTANA M R, BRINDIS E A. Genetic algorithm-based multi-bjective optimization of cutting param eters in turning processes[J].. Engineering Applications of Artificial Intelligence, 2006, 19(2) :127-133. 被引量:1
  • 10FRANCI C, JOZE B. Optimization of cutting process by GA approach[J]. Robotics and Computer Integrated Manufacturing, 2003,19(1/2) :113-121. 被引量:1

共引文献11

同被引文献43

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部