期刊文献+

Research and development of Ce-containing Nd2Fe14B-type alloys and permanent magnetic materials 被引量:6

Research and development of Ce-containing Nd_2Fe_(14)B-type alloys and permanent magnetic materials
原文传递
导出
摘要 Much demanded and overused are the critical rare-earth elements such as Pr, Nd, Dy, and Tb with increasing need of Nd Fe B-type rare-earth permanent magnets in the enlarging application areas, developing new high-tech industries, and emerging cutting-age frontiers. The balance and efficient use of rare-earth resources comes into being the national strategy, national defense, and border safety for many major countries and regions in the world.(Nd,Ce)Fe B-based permanent magnetic materials, which can not only reduce cost but also offer a feasible way for integrated and effective utilization of rare earth resources,have received much attention in recent years. The existence of CeFe2 and the mixed valence state of Ce in Ce Fe B compound, the different metallurgy behavior and the particular processing as well as potential various magnetic-hardening mechanisms, however, make it quite different from Nd-based alloys.For instance, the coercivity of Ce-containing magnets in some certain composition range, is even higher than that of the counterpart pure Nd-based magnets though the Ce-containing magnets possess inferior intrinsic properties. Consequently, it is very important to design proper composition and structure, optimize processing, and analyze the mechanisms in depth for this kind of magnet. High performance and cost-effective magnets can be fabricated if we can make full use of the composition's inhomogeneous and abnormal coercivity variation of the Ce-containing permanent magnets. In this paper, we have summarized the phase structures, magnetic properties and microstructures of(Nd,Ce)Fe B-based permanent magnetic materials to shed light on further research and development of this type of so-called "gap magnet". Much demanded and overused are the critical rare-earth elements such as Pr, Nd, Dy, and Tb with increasing need of Nd Fe B-type rare-earth permanent magnets in the enlarging application areas, developing new high-tech industries, and emerging cutting-age frontiers. The balance and efficient use of rare-earth resources comes into being the national strategy, national defense, and border safety for many major countries and regions in the world.(Nd,Ce)Fe B-based permanent magnetic materials, which can not only reduce cost but also offer a feasible way for integrated and effective utilization of rare earth resources,have received much attention in recent years. The existence of CeFe2 and the mixed valence state of Ce in Ce Fe B compound, the different metallurgy behavior and the particular processing as well as potential various magnetic-hardening mechanisms, however, make it quite different from Nd-based alloys.For instance, the coercivity of Ce-containing magnets in some certain composition range, is even higher than that of the counterpart pure Nd-based magnets though the Ce-containing magnets possess inferior intrinsic properties. Consequently, it is very important to design proper composition and structure, optimize processing, and analyze the mechanisms in depth for this kind of magnet. High performance and cost-effective magnets can be fabricated if we can make full use of the composition's inhomogeneous and abnormal coercivity variation of the Ce-containing permanent magnets. In this paper, we have summarized the phase structures, magnetic properties and microstructures of(Nd,Ce)Fe B-based permanent magnetic materials to shed light on further research and development of this type of so-called "gap magnet".
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第10期1087-1096,共10页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 51564037 and 51661011) the Innovation Fund Designated for Graduate Students of Jiangxi Province (Grant No. YC2016-B078) the Qing Jiang Scholar and the Start-up Fund of Jiangxi University of Science and Technology (Grant No. 3208600001)
关键词 (Nd Ce)Fe B-based alloys and magnets Compositions inhomogeneous Abnormal coercivity variation Phase structures Magnetic properties Microstructures (Nd,Ce)Fe B-based alloys and magnets Compositions inhomogeneous Abnormal coercivity variation Phase structures Magnetic properties Microstructures
  • 相关文献

参考文献1

共引文献4

同被引文献36

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部