期刊文献+

基于神经网络的流动预测模型研究 被引量:3

Study of Flow Forecasting Model based on Neural Network
原文传递
导出
摘要 以S形进气道为研究对象的主动流动控制研究中,流场状况分析对控制器的设计起到至关重要的作用,而在实时控制中,显然不可能通过流场的数值模拟获得流场分布情况。本研究从神经网络模型辨识理论出发,结合进气道流场的数值模拟结果和实验采集数据,对神经网络进行训练和验证,建立了不同来流马赫数下进气道沿程壁面静压的预测模型,模型拟合误差为0.007,预测结果与实际实验结果相符,证明了从辨识理论出发建立流场模型的可行性,为流场状况的实时获取提供了可靠易行的方法。 In the study of active flow control with S-shaped inlet duct as the research object,the analysis of flow field plays an important role in the design of the controller.In the real-time control,it is evidently and practically impossible to have the flow field distribution through numerical simulation.Based on the neural network model identification theory,and the numerical simulation and experimental data of the inlet duct flow field,the neural network is trained and validated,and then the prediction model of the static pressure of the inner wall along the inlet duct with different mach numbers is established.It proves the feasibility of establishing the flow model from the identification theory,providing a reliable and easy method for the real-time acquisition of the flow field.
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第11期8-12,共5页 Journal of Engineering for Thermal Energy and Power
关键词 流场 辨识 预测模型 神经网络 flow field identification prediction model neural network
  • 相关文献

参考文献3

二级参考文献13

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:184
  • 2周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166. 被引量:41
  • 3FAN S, LIAO J R, YOKYAMA R, et al. Forecasting the wind generation using a two-stage network based on meteorological information [J]. IEEE Transactions on Energy Conversion, 2009, 24 (2) : 474 - 482. 被引量:1
  • 4KUSIAK A, ZHANG Z J. Adaptive control of a wind turbine with data mining and swarm intelligence [J]. IENN ansac- tions on Sustainable Energy, 2011, 2(1):28- 36. 被引量:1
  • 5COPPIN P, KATZFEY J. The feasibility of wind power production forecasting in the Australian context[R]. Aspendale, Australia: CSIRO Atmospheric Research Centre, 2003. 被引量:1
  • 6POURMOUSAVI KANI S A, AREDHALI M M. Very short-term wind speed prediction: A new artificial neu- ral network-Markov chain model [J]. Energy Conversion and Management, 2011, 52(1) .-738 - 745. 被引量:1
  • 7WANG C, YAN W J. Short-term wind speed predic- tion of wind farms based on improved particle swarm optimization algorithm and neural network [C]// Inter- national conference on Mechanic Automation and control engineering. Wuhan: [s.n ], 2010:5186 - 5190. 被引量:1
  • 8DAMOUSIS I G, ALEXIADIS M C, THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correla- tion [J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361. 被引量:1
  • 9潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:220
  • 10杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66. 被引量:131

共引文献189

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部