期刊文献+

风电机组输出功率超短期预测的组合模型研究 被引量:14

VERY SHORT-TERM WIND TURBINE OUTPUT FORECASTING WITH COMPOSITIONAL MODEL
下载PDF
导出
摘要 为了提高风电功率的预测精度,基于多模型的预测MS-RBF神经网络的进行组合,通过Bayesian分类训练各子模型的权值,然后根据权重计算最终预测值;基于新疆某风电场实测历史数据,采用该组合模型与RBFNN模型分析对比,验证结果表明该组合模型有效减少了较大误差出现的频率,提高了整体的预测精度。 Increased the prediction accuracy of short-term wind turbine output power plays a key role in improving the electric grid system economic and security. In order to enhance the prediction accuracy of wind power, this paper selected the mixed structure-radial basis function (MS-RBF) neural network multi-model combined with each other, training the web weights by Bayesian learning, then reconstruction the final prediction for very short-term wind turbine output power; Based on the measured historical data of wind farm in Xinjiang, the compositional model compared with RBFNN models, experimental results indicated that the combination model effectively reduces the frequency of error and improve the overall prediction accuracy.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2014年第3期457-461,共5页 Acta Energiae Solaris Sinica
关键词 风电功率 预测模型 RBF神经网络 朴素Bayesian分类器 wind power predicted model RBF neural networks Naive Bayesian Classifier
  • 相关文献

参考文献18

  • 1Georgilakis P. Technical challenges associated with the integration of wind power into power systems [J]. Renewable and Sustainable Energy Reviews, 2008, 12 (3): 852--863. 被引量:1
  • 2袁铁江,晁勤,李义岩,吐尔逊.伊不拉音.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):23-27. 被引量:86
  • 3Mart Perez I. Wind forecasting activities [A]. The First IEA Joint Action Symposium on Wind Forecasting Techniques[C], Norrkoping, Sweden, 2002. 被引量:1
  • 4迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:499
  • 5Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power [J]. Solar Energy, 1998, 63 (1): 61-- 68. 被引量:1
  • 6Tortes J L, Garcia A, De Blas M, et al. Forecast of hourly average wind speed with ARMA Models in Navarre[J]. Solar Energy, 2005, 79(1): 65--77. 被引量:1
  • 7Louka P, Galanis G, Siebert N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (12): 2348-- 2362. 被引量:1
  • 8Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy, 2000, 21 ( 1 ): 25--55. 被引量:1
  • 9Ruddy Blonbou. Very short-term wind power forecasting with neural networks and adaptive Bayesian learning [ J ]. Renewable Energy, 2011, 36(3): 1118--1124. 被引量:1
  • 10Barbounis T G, Theocharis J B. Locally recurrent neural networks for long-term wind speed and power prediction [J]. Neurocomputing, 2006, 69(4-6): 466--496. 被引量:1

二级参考文献150

共引文献857

同被引文献156

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:76
  • 2丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 3黄兴泉,康书英,李泓志,张欲晓.GIS局部放电超高频电磁波的传播特性研究[J].高电压技术,2006,32(10):32-35. 被引量:37
  • 4冬雷,高爽,廖晓钟,冯成博.风力发电系统发电容量时间序列的混沌属性分析[J].太阳能学报,2007,28(11):1290-1294. 被引量:15
  • 5Alessandrini S, Delle Monache L, Sperati S, et at. A novel application of an analog ensemble for short-term wind power forecasting [J]. Renewable Energy, 2015, 76: 768-781. 被引量:1
  • 6Tascikaraoglu A, Uzunoglu M. A review of combined approaches for prediction of" short-term wind speed and power[J]. Renewable and Sustainable Energy Reviews,2014, 34: 243-254. 被引量:1
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[A]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, TheRoyal Society[C], London, 1998, 903-995. 被引量:1
  • 8Huang Norden E, Shen Samuel S P. Hilbert-Huang transform and its applications [ M ]. Singapore : World Scientific, 2005. 被引量:1
  • 9Wu Z, Huang N E. A study of the characteristics ofwhite noise using the empirical mode decomposition method [A ]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society[C], 2004, 1597-1611. 被引量:1
  • 10国家能源局.国家能源局关于印发风电场风电功率预测预报管理暂行办法的通知[EB/OL].http://www.cweea.com.cn/html/zengcefagui/201108/01-3410.html,2015.04-20. 被引量:1

引证文献14

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部