摘要
Let(Z_n) be a supercritical branching process with immigration in a random environment. Firstly, we prove that under a simple log moment condition on the offspring and immigration distributions, the naturally normalized population size W_n converges almost surely to a finite random variable W. Secondly, we show criterions for the non-degeneracy and for the existence of moments of the limit random variable W. Finally, we establish a central limit theorem, a large deviation principle and a moderate deviation principle about log Z_n.
Let(Z_n) be a supercritical branching process with immigration in a random environment. Firstly, we prove that under a simple log moment condition on the offspring and immigration distributions, the naturally normalized population size W_n converges almost surely to a finite random variable W. Secondly, we show criterions for the non-degeneracy and for the existence of moments of the limit random variable W. Finally, we establish a central limit theorem, a large deviation principle and a moderate deviation principle about log Z_n.
基金
supported by National Natural Science Foundation of China (Grants Nos. 11401590 and 11571052)