摘要
We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ0,ξ1,...) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξn) on R+, and reproduce independently new particles according to a probability law p(ξn) on N. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean EξZ(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
基金
the National Natural Sciente Foundation of China (Grant Nos. 10771021, 10471012)
Scientific Research Foundation for Returned Scholars, Ministry of Education of China (Grant No. [2005]564)